Reduced-Complexity Projection-Aggregation List
Decoder for Reed-Muller Codes

Jiajie Li, Huayi Zhou, Marwan Jalaleddine and Warren J. Gross

Abstract—Projection-aggregation decoders have been used in
conjunction with a list structure to achieve near maximum-
likelihood decoding for short-length and low-rate Reed-Muller
(RM) codes but suffer from high computational complexity. We
reduce the worst-case computational complexity of projection-
aggregation (PA) decoders by more than 50% using a scheduling
scheme compared to PA decoders without the scheduling scheme,
and propose a redesigned syndrome check pattern to avoid
repeated syndrome computations in the decoder. A latency model
based on the existing hardware architecture is proposed. Input
distribution aware (IDA) decoding is adopted as a pre-possessing
tool, and the average list size when using IDA decoding is
analytically derived under additive white Gaussian noise and
uncorrelated normalized Rayleigh fading channels. Using IDA,
the average list size is reduced by 30% with less than 0.1 dB
loss. The proposed list decoders require a smaller computational
complexity than the state-of-the-art iterative decoder, automor-
phism ensemble decoding with the belief propagation constituent
decoder (AED-BP) for decoding RM(7,3) and RM(8, 3) codes.
Based on the developed latency models, the PA list decoder
has a smaller latency than the AED-BP and the successive
cancellation list decoder to reach near maximum-likelihood
decoding performance.

Index Terms—IDA decoding, list decoders, Reed-Muller codes,
projection-aggregation decoders

I. INTRODUCTION

Reed-Muller (RM) codes [1] have recently attracted a lot of
interest in the research community due to their close structural
similarities [2] with capacity-achieving polar codes [3] that
have been adopted into the 5G communication standard [4].
Similar to polar codes, recent research works show that RM
codes achieve the capacity of various channels, such as the
binary erasure channel [5], the binary symmetric channel [6],
[7], and the binary memoryless symmetric channel [8], [9].
Additionally, RM codes are proven to have a polarization
effect, a property that contributes to the capacity-achieving
ability of polar codes [10].

The first decoder for RM codes is Reed’s majority-vote
decoder [11] that can correct error patterns with a weight
less than half of the minimum distance. RM codes have
excellent maximum likelihood (ML) decoding performance

Jiajie Li, Marwan Jalaleddine and Warren J. Gross are with the De-
partment of Electrical and Computer Engineering, McGill University,
Montréal, Québec, Canada. Huayi Zhou was with McGill University, and
is now with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 210018, China, and the Purple Mountain
Laboratories, Nanjing 210023, China. (e-mail: {jiajie.li, huayi.zhou, mar-
wan.jalaleddine } @mail.mcgill.ca, warren.gross@mcgill.ca)

Huayi Zhou is personally supported in part by National Science Foundation
of China (NSFC) under Grants 62201395 and Jiangsu Provincial Natural
Science Foundation under Grants BK20210044.

because of their large minimum distance [12]. Achieving
this ML decoding performance for first-order RM codes is
possible with the use of the low computational complexity
fast Hadamard transform (FHT) decoder [13], [14]. For higher-
order RM codes, Dumer’s list decoder, which is structurally
similar to successive cancellation (SC) list (SCL) decoding
[15], can be used to approach the ML performance at the cost
of a large enough list size [16]. There are other sequential
decoders that can achieve the ML decoding performance with
an average complexity equal to one SC decoding attempt
but these decoders have their own drawbacks. For example,
the SC stack (SCS) decoder [17]-[21] requires a large mem-
ory complexity to achieve ML decoding performance, and
the SC-Fano [22], [23] and the SC ordered-search (SCOS)
decoders [24], [25] require multiple backtracking attempts
that cause large decoding latency in the worst-case scenario.
Details of the summary of the existing techniques are in
Section II.

When decoding short-length and low-rate RM codes, a
recently proposed recursive projection-aggregation (RPA) de-
coder shows superior decoding performance than Dumer’s list
decoder, and the RPA list decoder extension can achieve ML
decoding performance under various rates and lengths [26].
However, since the computational complexity of RPA in-
creases with the order of RM codes, RPA decoders can be
seldom used with higher-order RM codes [26].

Many techniques and variants have been developed to
reduce the complexity of RPA decoders. For RPA decoders,
an early stopping criterion based on the syndrome check and a
scheduling scheme based on the sign change per iteration are
proposed to reduce the average complexity and the worse-case
complexity respectively [27]. A sparse multi-decoder variant
of the RPA decoder (SRPA) reduces the complexity by using a
subset of subspaces [28]. The collapsed projection-aggregation
(CPA) decoder removes the recursive structure in the RPA
decoder [29]. For CPA decoders, a pruning metric [30], which
can be used to construct a pruned CPA (PCPA) decoder, and
an optimized pruning method [31] are proposed to remove
subspaces that are likely to return similar decoding results. For
the ease of explanation in this work, the RPA decoder and its
variants are referred as projection-aggregation (PA) decoders.

When extending the PA decoder to a Chase-type list de-
coder, Reed’s majority-vote decoder is used as the post-
processing decoder [26]. The output from the Reed’s decoder
is a RM codewords, which ensures all decoded codewords are
RM codewords when performing the ML-in-the-list selection
in the list decoder. A simplified list decoder proposed in [31]
uses a syndrome check to replace the Reed’s decoder, and

decoded codewords, which have an all-zeros syndrome, will
be used by the ML-in-the-list selection in the simplified list
decoder.

Prior work focused on reducing the computational com-
plexity of PA decoding without attempting to reduce the
complexity of the PA list decoding. In this work, we introduce
several modifications to reduce the computational complexity
of the PA list decoder. It should be noted that parts of the
techniques used in this work were previously discussed in [27],
[31] whereby the syndrome check pattern, the scheduling
scheme, the optimized criterion for pruning the CPA, the
optimized PCPA (Opt. PCPA), and the simplified list decoder,
are devised. This article builds on the earlier work in the
following ways:

1) We introduce a redesigned syndrome check pattern, use
this new pattern alongside the scheduling scheme [27],
and test the pattern with the Opt. PCPA decoder. These
techniques not only reduce the complexities but also
return the syndrome check result alongside the decoded
codeword to avoid the repeated syndrome computation
when extended to the simplified list decoder.

2) The Opt. PCPA decoder with the scheduling scheme
reduces the worst-case complexity by more than 50%
compared to the Opt. PCPA decoder without the schedul-
ing scheme. The Opt. PCPA decoder with redesigned syn-
drome check pattern and scheduling scheme is extended
to the simplified list decoder.

3) A latency model based on the existing hardware archi-
tecture is proposed for the list decoder.

4) We use the input-distribution-aware (IDA) method [32],
[33] to determine the list size for the list decoder based
on the received soft information.

5) We propose a method to compute the average list size
of the IDA decoding given the channel model and as-
sumptions on the transmitted data. This differs from the
prior works [32], [33] that determine the list size through
Monte Carlo simulations.

A RM code with the order r and the code length parameter
m is defined as RM(m, r). Numerical experiments are con-
ducted on RM(7, 3), RM(8, 3), and RM(7, 4) codes. By using
IDA decoding as a pre-processing tool, the average list size
of list decoders can be reduced by 30% with less than 0.1 dB
performance loss at a FER of around 10~*. Average list sizes
returned from the proposed method are similar to analytical
results. When decoding RM(7, 3) and RM(8, 3) codes, the pro-
posed reduced-complexity PA list decoder requires a smaller
average complexity than the state-of-the-art automorphism
ensemble decoding (AED) with the belief propagation (BP)
constituent decoder (AED-BP) [34]. Also, the proposed list
decoder has 0.4 dB gain compared to the AED-BP decoder at
a FER of 2 x 10~* when decoding the RM(8, 3) code under
the same list/ensemble size of 16. The simplified list decoder
has 6.8x, 3.5, and 4.7x smaller worst-case complexity than
AED-BP when decoding RM(7, 3), RM(8, 3), and RM(7,4)
codes respectively. According to the latency model based on
the state-of-the-art hardware architecture, the proposed list
decoder has a smaller latency than the AED-BP and the SCL

decoder.

This work is structured as the following. Section II gives
a summary of existing sequential decoding techniques. Sec-
tion III provides necessary backgrounds of RM codes, PA
decoders, and some complexity reduction methods. Section IV
presents a systematic method to calculate the number of oper-
ations required by each functional operation in the PA and its
list decoders which helps analyze the methods proposed in this
work. Section V introduces the redesigned syndrome check
pattern and discusses how to select subspaces that are kept in
the scheduling scheme. Section VI analyzes the complexity
reduction brought by the IDA decoding, and explains the
proposed latency model. Experimental results are shown in
Section VII. Conclusions are drawn in Section VIIIL.

II. SUMMARY OF RELATED WORKS

The SCL/recursive list decoders [15], [16] can return near
ML decoding performance. It is empirically [16] and theo-
retically [35] observed that the recursive list decoder with a
list size of 1024 is required to achieve near ML decoding
performance for some RM codes [16]. Methods like the
adaptive list decoder [36] reduce the average complexity when
a large list size is needed for decoding. However, a large worst-
case complexity and a large decoding latency still exist for the
adaptive list decoder [36].

Many other decoder types are also developed alongside the
list decoding approach. The idea of adopting stack into the
recursive and sequential decoders for RM codes is considered
in [17], an improved stack-based decoder with the “Look-
Ahead” (incorporate not-yet-processed bits/nodes) evaluation
metric is proposed in [18], and these decoders achieve near ML
decoding performance given a sufficient stack size. Similar
research trends appear for polar codes, where the SCS de-
coder [19], [20] is used to improve the decoding performance
and the SCS decoder with a “Look-Ahead” (incorporate not-
yet-processed frozen bits) metric is proposed in [21]. While
having a lower average complexity than the SCL/recursive list
decoder, it is observed that a stack size > 100 is required
to achieve near ML decoding performance for some RM and
polar codes, which incurs a large memory complexity.

For RM and polar codes, another type of sequential de-
coders, the SC-Fano decoder achieves near ML decoding
performance as well [22], [23]. The SC-Fano decoder has a
smaller memory requirement compared to the SCS decoder,
and it has competitively low average complexity equal to
one SC decoding attempt. However, the SC-Fano decoder
for RM and polar codes requires a larger time complexity
than SC, SCL, and SCS decoders [37], and it also has a
larger decoding latency than the SCL decoder in the hardware
implementation [38].

A recently proposed ordered-search variant [24], [25] of the
SC decoder also achieves ML decoding performance of RM
codes using competitively low average complexity such as an
average complexity equal to one SC decoding attempt [24].
These SC ordered-search variants are much easier to tune
to achieve ML decoding performance compared to the SC-
Fano decoders. In the worst-case scenario, the SC ordered-
search decoders [24], [25] require multiple backward tree

search/node-visits in the sequel to reach the ML decoding per-
formance, and have a complexity that is equal to several (e.g.,
> 100) SC decoding attempts. These sequential attempts might
cause high worst-case latency in the hardware implementation,
so the impact due to the worst-case complexity needs to be
further investigated.

The decoding structure of the PA decoder allows parallel
implementation [26], which is a crucial factor that affects the
decoding latency and throughput [26]. Also, the PA decoder
requires a small memory complexity (e.g., 4n for the RPA
decoder, 5n for the RPA list decoder, and n is the code
length) [26]. Moreover, unlike the hard-decision output nature
of many SC/recursive decoders mentioned above, the soft-
in/soft-out nature of the PA decoder is suitable for iterative
detection and decoding [39] according to [34]. A hardware
implementation of a PA decoder, iterative PA decoder, without
any early stopping criterion [40] shows a higher throughput
and a lower decoding latency than a state-of-the-art SCL
decoder implementation [41] for polar codes. Hence, the
PA and PA list decoders are good complements to existing
techniques mentioned above. However, the implementation of
the iterative PA decoder has a higher power consumption than
the SCL decoder implementation [40], which is partially due
to the high computational complexity (both the average and the
worst-case complexity). Our work aims to provide a systematic
approach for reducing the complexity/power consumption of
the PA decoder.

III. PRELIMINARIES

A. Notations

Matrices are denoted as bold upper-case letters (M), and
vectors are denoted as bold lower-case letters (v) unless stated
otherwise. The transpose operator is denoted as ', and a
projection based on the coset of a subspace B; is represented
by the subscript /B;. The index in binary representation is
denoted as z.

B. RM Codes

RM codes can be defined by two parameters m and r, and
0 < r < m. The generator matrix for the RM(m, m) code
(G(m,m)) can be obtained by applying the m-th Kronecker
power of the base matrix F' [2]:

G(m,m)=F®" F = E ﬂ . (1)

The generator matrix for the RM(m,r) code (G(m,r)) is
composed of rows that have the k = > ;—((") largest
Hamming weight in G(m, m), and the rate of the RM(m, r)
code is R = k/n, where n = 2™. The parity check matrix
H of the RM(m,r) code is the generator matrix of the
RM(m,m —r — 1) code (H = G(m,m —r — 1)) [42], and
valid codewords ¢ € RM(m,r) have an all-zeros syndrome
vector s = He' = 0.

C. Projection-Aggregation Decoder

PA decoders are composed of three phases: i) projection; ii)
decoding of » = 1 RM sub-codes; and iii) aggregation. These
three phases are repeated iteratively to produce the decoded
codeword.

i): Order r of RM(m, 1) codewords is reduced by projecting
to s-dimensional subspaces until reaching RM(m — r + 1,1)
sub-codes, where 1 < s < r — 1. The projection function for
the LLR vector L is

L, (T) = 2tanh ™" (H tanh (L(;))> N)

zeT

where T is the coset of the s-dimensional subspace IB;, and
the coset 1" has a size 2°. Two main PA decoders, the RPA
decoder and the CPA decoder, perform the projection step as
the following:

e RPA decoders project the received codeword or the
log-likelihood ratio (LLR) vector to ng = n — 1
one-dimensional subspaces, produce n — 1 different
RM(m — 1,7 — 1) sub-codes, and reduce the order r by
1 in every recursion.

o CPA decoders project the received codeword or the LLR
vector to ng = (") , different (r — 1)-dimensional
subspaces, and produce RM(m — r 4+ 1,1) sub-codes
without recursions.

ii): RM(m — r + 1,1) sub-codes are decoded by the FHT
decoder. The code bit g, (1) of decoded RM(m —r+1,1)
sub-codes is an estimation of the parity check of code bits in
a coset 7.

iii): In the aggregation phase, the estimation of the received
LLR vector of the RM(m, r) codeword (L) is recovered. For
both the RPA decoder and the CPA decoder, each LLR is
computed according to the g5, (T") and all other LLRs in the
same coset. Then, results from all subspaces are aggregated:

np
Lcumu(z) = Z —1y/IBi(T)
=1

2tanh ™" [] unﬁ1<1”;”)>

2, €T\z

3)

The average of the aggregated LLR vector (ﬁ = Leymu/nB)
is either fed to the next iteration, or hard decisions of the
results are used to output the decoded codeword.

According to [31], a saturation-based early stopping is de-
vised to stop decoding if two consecutive iterations return the
same result and if the difference of LLR vectors between these
consecutive iterations is smaller than a pre-defined threshold:

IL — Ll|2 < 6]|L|

s, and ¢; = ¢€;_1 1 € [].,Nmax}, 4)

where 6 is a small constant, || - || denotes the L2 norm, and
Npae 18 the maximum number of iterations. The LLR vector
of the previous iteration is denoted by L. The LLR of the
current iteration is denoted by L. The hard decision of LLR
vectors for current and previous iterations are denoted as ¢;

and ¢&;_; respectively. Furthermore, a syndrome-based early
stopping can be used in the PA decoder [27], whereby the
syndrome is checked after aggregating a number of decoded
results from subspaces, and the decoding stops when

Hé' =o0. ®)

If early-stopping criteria are not satisfied, L is used as the
LLR vector L for the next iteration. The hard decision of L
is used as the decoded codeword when the maximum number
of iteration N,,,, is reached or early stopping criteria are
satisfied [26], [29], [27].

D. Approximated PA Decoder

According to [27], [31], the equation of projection (2) can
be replaced by the min-sum approximation [43]. In this work,
sign(-) represents the function of computing the sign of inputs,
and the LLR magnitude is denoted by |L(z)|. The min-sum
approximation of (2) is

Lyg,(T) ~ ([] sien(L(z)) min{|L(z). V z € T}. (6)
zeT

The hyperbolic tangent and the inverse hyperbolic tangent
portion of the aggregation (3) can be approximated by the
min-sum accordingly,

np
Leuwmu(2) & Y =19=O (] sign(L(z))
=1 2z, €T\z . (7

min({|L(z;)

¥z €T\ 2})

E. Optimized PCPA Decoder

It is shown in [30] that projections to subspaces might have
similar error patterns if their subspaces are similar, and the
probability of having similar error patterns is

1 r—
P — 5[1 + (1 _ 26)(2< IH’I—Q‘Bi ﬂIBJD]’ (8)

where IB; and IB; are two subspaces, and ¢ is the probability
of an independent error occurs in the received vector. Based
on (8), a correlation coefficient is proposed to measure the
similarity of subspaces in the CPA decoder:

G dim(B; N B;)
rg = ;;r” and r;; := — R 9)
where 7;; is the pair-wised correlation between B; and Bj,
S is the set of subspaces, rg is the set correlation for S,
and dim(-) is the function to compute the dimension of the
intersection of two subspaces. In equation (9), ¢ and j index
subspaces in S. |S| denotes the size of the set of subspaces
S. Then, pruning can be performed based on the correlation
metric, and a subset that has the least similar subspaces is
constructed based on (9). The smaller the rg, the better the
subspace collection S, and finding a S with a small rg can
be transformed into a mixed-integer quadratic programming
problem [31]:
minuRu ", s.t. u; € {0,1} Vu; € u, 1u’ = |8,

u

(10)

where u; = 1 if the subspace B; € S, and u; = 0 otherwise.
R is a matrix that stores all values r;;, and it is symmetric and
positive semi-definite if diagonal entries are properly scaled by
adding a diagonal positive semi-definite matrix [44]. The all-
ones vector is denoted by 1. Methods have been proposed to
solve (10) and produce Opt. PCPA decoders in [31].

F. Projection-Aggregation List Decoder

The list decoder extension of PA decoders is a Chase
decoder [26]. First, positions corresponding to ¢ smallest
LLR value in terms of magnitude (|L(z)|) and the maxi-
mum LLR magnitude of L (max,(|L(z)|)) are found, where
L(z) € L. Then, LLRs in these ¢ positions are replaced with
+max,(|L(z)|) or £2max,(|L(z)|). There are 2! possible
cases, so the list size is 2¢. These 2¢ cases are decoded by
the PA decoder independently. But the decoded codeword of
RPA/CPA decoders is not necessarily a RM codeword. Reed’s
decoder is used to correct the decoded codewords to valid
RM codewords [26], or a syndrome check is used to filter
out decoded codewords that are not RM codewords [31]. The
codewords returned from the Reed’s decoder or PA decoder’s
results with an all-zeros syndrome vector are included in the
list, and the codewords with the largest posterior probability
in the list will be returned from the list decoder [26], [31].

IV. COMPLEXITY ANALYSIS OF
PROJECTION-AGGREGATION DECODERS

Given all proposed complexity reduction techniques, a
throughout complexity analysis is needed to demonstrate the
effectiveness of proposed techniques and parameter tuning. In
this work, the complexity analysis follows a weighted count
modified from the rule proposed in [34], and the weight is
shown in Table I. In [34], BP decoding is assumed to use
the box plus and the box minus approximation [45]. In this
work, the PA decoder is assumed to use the min-sum approxi-
mation, when the complexity is counted. This work considers
projection, FHT decoding, aggregation, and syndrome checks
as key functional operations of the PA decoder. Weights of
these functional operations are computed as the following.

Projection: From the approximated projection (6), signs of
LLR in the same coset are multiplied, and the minimum LLR
magnitude is searched among the coset. When projecting to
d-dimensional subspaces, each coset contains D = 29 LLRs,
where d = r—1 for the CPA/PCPA decoder. For a coset size D,
D —1 pair-wised multiplications of signs (sign(x)sign(y)) and
pair-wised comparisons for finding the minimum magnitude
(min(|x|, ly|)) are needed. When projecting to a d-dimensional
subspace, the projection operation is repeated 2™~ times for
2m—d different cosets. A sign change (sign(x)y) is performed
after the sign of the parity check and the minimum LLR mag-
nitude are found for each coset. For example, the projection
of the RM(7, 3) code requires (22 —1) x 27~2 = 96 pair-wised
multiplications of signs and comparisons, and 2772 = 32
sign changes. The projection of the RM(7,4) code requires
(23 —1) x 2773 = 112 pair-wised multiplications of signs and
comparisons, and 2772 = 16 sign changes. Operations repeat
N times when projecting to N subspaces.

TABLE I
WEIGHTS OF KEY FUNCTIONAL OPERATIONS OF PA AND ITS LIST DECODERS, WHERE d = r — 1, D = 29, N IS THE NUMBER OF DECODED SUBCODES,
Ngyn IS THE NUMBER OF SYNDROME CHECKS, AND Nirggr. IS THE NUMBER OF ITERATIONS.

Operation | Weight | 2-input 8 [34] | Projection | FHT |

Aggregation | ML out of L | FFG BP Stopping [34] | Syndrome Stopping

sign(x)sign(y) 1 N N(D —1)2m—d N(lm=g2n N(D - 2)n 0 Nier. (T 420 — 1) 0

sign(z)y 1 N Nom—d 0 N2n Ln 0 0

min(|z|, |y|) 1 N N(D —1)2m—d 0 N(D —2)n 0 0 0

max(z,y) 1 0 0 N(@2m=4—1) 0 L-1 0 0

f4(lz]) LUT 1 2N 0 0 0 0 0 0

T4y c—y 1 AN 0 N(@m=d(m — d)) n(N —1) Lin—1) 0 0

Ty 3 0 0 0 Niter.nt 0 0 0

AND(z,y) 1 0 0 0 0 0 0 Nsyn(k(n — k) + 255 (n — k + 1))
XOR(z,) 1 0 0 0 0 0 0 Noyx((k — 1)(n — k) + 255 (n — k +1))
Weighted total | - | 9N | N@D - 1)2m=e | N3 L 1yom=d 1) | (N@D=1) = 143Nie)n | 2Ln—1 | N2 +20-1) | Nsyn(2k(n — k) + (n — k)2)

FHT decoding: The FHT decoding is performed on the
projected codeword that has a code length of 2%, and the
FHT decoding has three steps [46]: i), perform the FHT; ii),
find the index corresponding to the element with the largest
magnitude in the FHT output; iii), encode the message vector
corresponding to that index back to the first-order RM code.
The FHT needs 2™~ %4(m — d) additions and subtractions in
total. 2~¢ — 1 pair-wised comparisons (max(zx,y)) are need
to search the index of the maximum magnitude in the FHT
output with a length 2™~ %, The maximum complexity of fast
encoding for polar codes is %nlog n [47], [48], where n is the
code length. Due to the similarity between polar codes and RM
codes, the same encoding technique can apply to RM codes,
and the encoding complexity of RM codes is assumed to be the
same of polar codes. As the encoding operation is viewed as
the sign multiplication and the complexity of the fast encoding
is used as the weight in the prior work [34], we follow the
same convention and the weight of the encoding of the order-
1 RM subcodes is ((m —d)2™~?) /2 sign multiplication
operations. FHT decoding of the RM(7,3) code requires
2% x5 = 160 additions and subtractions, 2° —1 = 31 pairwised
comparisons, and (2° x 5) /2 = 80 sign multiplications. FHT
decoding of the RM(7,4) code requires 2¢ x 4 = 64 additions
and subtractions, 2* — 1 = 15 pairwised comparisons, and
(2* x 4) /2 = 32 sign multiplications. FHT decoding is done
N times to decode N subcodes.

Aggregation: From (7), each decoded LLR is estimated
based on all other LLRs in the same coset, so the min-
sum approximation (7) is performed among D — 1 elements.
This results in D — 2 pair-wised multiplications of signs
(sign(z)sign(y)) and pair-wised comparisons(min(|z|, |y|)). A
sign change operation (sign(x)y) is performed after the sign
of the parity check and the minimum LLR magnitude are
found. Also, an additional sign change is performed based
on the decoded first-order codeword (—1Q/Bi(T)). Thus, two
sign change operations are needed by the aggregation. These
operations are repeated n times to get estimations of n LLRs in
the received LLR vector. Hence, the estimation of the received
LLR vector of a RM(7,3) code requires 2 x 27 = 256 pair-
wised multiplications of signs and comparisons, and 2 x 27 =
256 sign change operations. The estimation of the received
LLR vector of a RM(7,4) code requires 6 x 27 = 768 pair-
wised multiplications and comparisons, and 2 x 27 = 256 sign
change operations. After computing results from NV subspaces,
N — 1 additions are needed to accumulate results from all

subspaces. In the aggregated LLR vector, n estimated LLRs
are normalized in every iteration, which takes n multiplications
(- y).

Syndrome early stopping: Since the parity check matrix of
the RM(m, r) code is H = G(m, m—r —1), the construction
process of H can be viewed as removing first k£ rows in
G (m,m) with a weight < 2"+1. Hence, the structure of H can
be approximately viewed as the concatenation of a (n—k) x k
sub-matrix on the left and a (n — k) x (n — k) lower triangular
sub-matrix on the right. To compute the ith element in the
length n—k syndrome vector, k+¢ multiplications and k+:—1
additions are needed. In total, the number of multiplications
is

n—k
Yo kti=kx(n-k)+ S (n—-k+1),
i=1
and tllge number of additions is
Z(k—l)—i—i:(k—l)x(n—k)+n_k(n—k+1).

Heilcle, the parity check of the RM(7,3) code requires 6112
additions and 6176 multiplications. The parity check of the
RM(7,4) code requires 3277 additions and 3306 multiplica-
tions. Operations mentioned above are repeated N, times
if Ngyn syndrome checks are performed. Moreover, the mul-
tiplication and the addition in the binary field are viewed as
AND and XOR operations respectively, which are assumed to
have a unit cost.

V. REDUCED-COMPLEXITY CPA/PCPA DECODERS

In this section, the syndrome-based early stopping (SYN)
and the scheduling scheme (SCH) method are applied to
the CPA/PCPA decoder. First, the syndrome check pattern is
redesigned, and this redesigned pattern aims to avoid repeated
syndrome computations when extending the decoder to the
simplified list decoder. Also, the redesigned syndrome check
pattern should address corner cases generated by the char-
acteristics of the CPA decoder and the proposed scheduling
scheme (SCH) for reducing the worst-case complexity. Sec-
ond, to apply SCH in the CPA/PCPA decoder, a discussion on
subspaces that are kept in the scheduling scheme is presented
in this work.

A. Redesigned Syndrome Check Pattern

The syndrome can be checked after receiving the LLR
vectors and aggregating § decoding results as proposed in [27].

This proposed syndrome check pattern does not take several
corner cases into consideration, and repeated syndrome com-
putations might be performed when extending to the simplified
list decoder. Corner cases addressed in this work are the
following:

1) The number of subspaces in the PA decoder might not
be divisible by the frequency ¢, so the syndrome check
might be skipped at the end of the iteration.

2) When adopting the SCH [27] into the decoder, it is likely
that the number of subspaces is smaller than the syndrome
check frequency § or that the number of subspaces is not
divisible by J.

3) A syndrome check result should be returned alongside
the decoded codeword to avoid repeated syndrome com-
putation in the simplified list decoder.

Because of the corner cases mentioned above, the syndrome
check pattern should be redesigned. Our simulation results
show that, on average, several FHT decoding attempts are
needed to output a codeword at our target FER, and we
hypothesize that error-free received LLR vectors are rare. So,
the redesigned syndrome check pattern removes the syndrome
check on the received LLR vector. Also, we propose an
adaptive frequency to handle corner cases, which ensures that
every returned decoded codeword will be accompanied by a
syndrome check result. Assume ngp is the number of subspaces
used in the current iterations, and npy is either not divisible
by the § or smaller than §. Given a frequency J, we compute
the sequence that contains the number of aggregated decoding
results of subspaces before the syndrome check will perform
as follows:

Step 1: The total number of syndrome checks is calculated
as ["E], and a sequence f = [1,2,...,[“E]], which
records the subspace’s indexes of where the syndrome
check should be performed, is generated.

Before performing a syndrome check, a number of
subspace results should be aggregated. The sequence
that stores the number of aggregated subspaces is
calculated by J f.

The elements in f are clipped to np ({min(d x
i,ng), Vi € {1,...,["E]}}).

Two examples are given to demonstrate how the adaptive
scheme handles corner cases mentioned above.

Example 1: Assume that a RM(7,2) code is decoded by
the CPA decoder and the syndrome check frequency § = 32.
When r = 2, the CPA decoder is equivalent to the RPA de-
coder. Hence, the CPA decoder needs to decode 127 subspaces.
The number of syndrome checks is [2B] = [127] = 4, and a
sequence [1, 2, 3, 4] is created. Then, the sequence is multiplied
with the syndrome check frequency d to get indexes when
the syndrome check should perform (§f = [32,64, 96, 128]).
Lastly, indexes that are larger than np are clipped to ng, and
the sequence becomes [32, 64,96, 127]. Hence, the syndrome
check would be performed after aggregating 32, 64, 96, and
127 results of subspaces respectively.

Example 2: Assume that a RM(7, 2) code is decoded by the
CPA decoder with a syndrome check frequency 6 = 32, the
reduction factor for SCH is dscy = 2, and N,,,o; = 4. When

Step 2:

Step 3:

r = 2, the CPA decoder is equivalent to the RPA decoder.
Hence, the CPA decoder needs to decode 127 subspaces in
the first iteration, 64 subspaces in the second iteration, 32
subspaces in the third iteration, and 16 subspaces in the
last iteration. It can be seen that a syndrome check can be
outputted alongside the decoded codeword for the first three
iterations, and the decoder at the iteration four cannot output
a syndrome check alongside the decoded codeword as np
at iteration four is smaller than ¢. Hence, by the adaptive
scheme at iteration four, the number of the syndrome check
is [%2] = [45] = [0.125] = 1, and the generated sequence
is [1]. Then, the sequence is multiplied by § to get the index
([1 x &] = [32]), and addresses the corner case by clipping to
np ((min(32,np)] = [min(32, 16) = 16]).

B. Scheduling Scheme

The scheduling scheme [27] can be applied to the
CPA/PCPA decoder to reduce the worst-case complexity. The
maximum number of subspaces/projections is reduced by a
factor of dgcy after every iteration. If we choose to use
the number of instances of FHT decoding to estimate the
worst-case complexity, then the worst-case complexity of the
CPA/PCPA decoder with SCH is Zﬁi”g”rl[;m] instances
of FHT decoding, where np is the number of siql%'spaces used
by the CPA/PCPA decoder. The other problem that should be
answered is what subspaces should be kept for later iterations
if the SCH is used in the PCPA decoder.

In [27], assume there are n subspaces in the RPA decoder,
and these np subspaces are firstly shuffled. At every iteration
1, the RPAgcy decoder uses the first [d"i’B | subspaces in the
decoding process, where i € {0, 1, ...,]\Sfj:az —1}. A greedy
search method is proposed to generate the Opt. PCPA decoder
in [31], which firstly collects a set of subspaces that have
zero pairwise correlation with each other, and then, a new
subspace that incurs a minimum increment of set correlation
with respect to the current set of subspaces is added:

argmlni = Z T
B;eS

,V]Bj € S and VIB; ¢S

(11
Hence, for the subspace order generated by the greedy search
method, keeping the first [d’:fﬁ] subspaces naturally forms a
set of subspaces with a small set correlation.

Simulations on PCPA decoders with the shuffled and the
greedy search generated subspace order are performed, and
the pseudo-code of the PCPA decode with the new syndrome
check pattern and SCH is shown in Algorithm 1. Fig. 1 (a),
(c), and (e) show the FER results of PCPA decoders with
and without the syndrome check and the SCH. The greedy
search generated subspace order (Ord.) and three different
shuffled subspace orders (Rand.) are used in the simulation.
The frequency § for the syndrome check is set to 16 for
the RM (7,3) code, 8 for the RM (7,4) code, 64 for the
RM (8, 3), and the reduction factor dscy = 2. The reasoning
for selecting the parameters § is explained in Section VII.
PCPA denotes the PCPA decoder without the syndrome check
early stopping and the SCH. Ord. denotes keeping the first

—— PCPA - -@ - PCPAgynsscu Ord.
—— PCPASYN+SCH Rand. 1 — 4 - PCPASYN+SCH Rand. 2
PCPASYN+SCH Rand. 3

10-1 106
10—2 g
é w 10° 3 e
10-3 z T
a
10_4\””\”“\““ 104\””\”“\““\
2 2.5 3 3.5 2 2.5 3 3.5
Ey/No [dB] Ey/No [dB]
(a) RM(7,3) (b) RM(7,3)
107! 107
1072
o 8'_ 108
-3 .
|10)
< 105
104 i\o\
—
1075\””\””\”“\ 104\”“\“”\”“\
3.5 4 4.5 5 3.5 4 4.5 5
Ey/No [dB] Ey/No [dB]
(c) RM(7,4) (d) RM(7,4)
10° 107
10-1
x &
g 1072 s 1004 g
z =
1073
]_074 LA B B B 105\“”\”“\““\
1 1.5 2 2.5 1 1.5 2 2.5
Ey/No [dB] Ey/No [dB]
(e) RM(8, 3) () RM(8, 3)
Fig. 1. FERs and numbers of operations of PCPA decoders.

(;’B | subspaces with greedy search generated subspace order.

Rand. 1, 2, and 3 denote keeping the first [;“ﬂ subspaces
with three different shuffled orders. PCPA decoders with dif-
ferent scheduling scheme orders have similar error correction
performance as the PCPA decoder without the syndrome check
and the SCH. Observed from Fig. 1 (b), (d), and (f), a similar
average complexity is required by the PCPA decoder with the
Ord. reduction order, compared to random reduction orders. In
this work, the PCPA decoder with the greedy search generated
subspace order is used for all simulations.

Methods have been proposed to reduce the number of
FHT decoding attempts in the worst case. We assume all
recursive layers in the RPA decoder use the same N,,qz-
The original RPA decoder [26] uses all n — 1 subspaces in
every recursive layer so the worst-case complexity of the
RPA decoder is []/_3 Nmaz(2""¢ — 1). The SRPA decoder
employs multiple sparse RPA decoders that use only a portion
of the subspaces [28]. If one-eighth of subspaces are used
in each recursive layer, the worst-case complexity of the

SRPA decoder is (Npmaz) ' i 2 Qm "¢,_; FHT decoding
attempts, where ¢,_; is the number of sparse decoders in the
order-(r — i) recursive layer. The RPA decoder with SCH
employs a decay factor dscy in each recursion layer, and
the maximum number of subspaces in each recursion layer
is reduced by a factor dscy in the next iteration [27], which
requires []}_ Z Nmaz =1 (2”7 =17 FHT decoding attempts in

the worst case. The RPA decodcer with the multi-factor pruning
strategy (RPAyp) uses different pruning factors for different
layers and iterations [49], and its worst-case complexity is
)\RPAMF (m, Ty, 5itera 6rec: Nrnaw)

Nmaax

= 3 [oigten e
i=1

5iler, 61‘807 Nmaw)

FHT decoding attempts, where v is the pruning factor at the

first iteration of the order-r recursive layer, and i, and dyec

are pruning factors for every iteration and recursion.

Since the pruning criteria proposed in [30] only works
for RM codes with » > 2, the comparisons of worst-case
complexity are performed on the RM(7, 3) code. From litera-
ture [27], [28], [49], all these worst-case complexity reduction
techniques incur negligible performance loss. Table II presents
results of several worst-case complexity reduction methods.
The reduction factor dscy for RPAgcy and PCPAgcy with 128
subspaces is 2. 1/8 of total subspaces are used by the SRPA
decoder, and the number of decoders that only use a subset
of subspaces are 2 and 4 for recursive layers with r = 3
and r = 2 respectively. The parameter setting for the RPA
with the multi-factor pruning is (7, diter, Orec) = (%, %, %)
From Table II, the worst-case complexity has been reduced
by a significant portion by previous work. The PCPA decoder
with SCH leverages the non-recursive structure, pruning, and
the SCH, so it requires significantly fewer instances of FHT
decoding compared to other methods. By using the SCH with
the PCPA decoder, the worst-case complexity is reduced by
50% compared to the PCPA decoder without the SCH.

611

iter

= 1)) [Arpaye (m — 1,7

VI. PROPOSED MODIFICATIONS TO L1ST DECODER

Due to the large computational complexity measured by the
number of FHT decoding (O(n" logn) for RPA decoders [26]
and O(nlogn) with a big multiple (™), for CPA decoders
[29]), PA list decoders are less attractive compared to other
low-complexity decoders for RM codes such as the AED for
RM codes [34]. Reductions in complexity are needed for PA
list decoders to compete with state-of-the-art decoders. IDA
decoding is used to reduce the high computational complexity
of the list decoder in this work. Also, based on the existing
hardware architecture [40], a latency model is proposed for
the PA list decoder.

A. IDA Assisted Reduced Complexity List Decoder

IDA decoding is proposed by Condo et al. to reduce the
average complexity of list decoders [32], [33] with little
decoding performance degradation. It is observed that most
received soft information can be decoded using small list
sizes [33]. Thus, by using IDA as a pre-processing tool, the

TABLE I
WORST-CASE COMPLEXITY OF PA DECODERS. THE WORST-CASE COMPLEXITY IS MEASURED BY THE MAXIMUM NUMBER OF FHT DECODING
ATTEMPTS IN THE DECODER.

RM codes | RPA [26] | RPAscy [27] | SRPA [28] | CPA [29] | RPAyr [49] | PCPA-128 [31] | PCPA-1285cy

RM(7,3) | 128016 | 28800 | 16384 | 10668 | 5879 | 512 \ 240
Algorithm 1: PCPAgynscu Algorithm 2: IDA/M-IDA-Simp. List Decoder
Input: L, m, 7, Nmaz, nB, dscu, 6, 0 Input: L, m, 7, Nmaz, 0, t, 7, ¢, 0, dscn
Output: ¢ Output: ¢
1 H+ G(m,m—r—1) t H « GenerateParityMatrix(G(m,m —r —1))
2 éAold ~—0 2 L+ L
3 Lyg« 0 3 ListSize < IDA/M-IDA(L,~,)
4 fori=1,..., Npax do 4 t + log,(ListSize)
5 fori=1,...,[ng/d] do 5 (21, ..., 2t) + indices of the ¢ smallest |L(2)|, z € E
6 | (i) < min(d x 3,nB) 6 Lmaz < 2max({|L(z)|, Vz € E})
m 741=1
’ Lcu[’"ﬁ(z) < 0vz€{0,1} 8 for I € {Lmaz, —Lmaz}’ do
8 for j=1,...,ng do
9 L «— P : i . 9 (L(Zl)vL(Z2)7~~-7L(Zt))Hl
B. rojection(L,By) N
LBy ‘ 10 é, 8 < PCPAsyn+scu(L, m, 7, Nmaa, 0,6, dscn)
10 U/B; < FHTDecodlng(L/Bj) u if s —— O then
11 Leumu+ = Aggregation(L, '.‘)/]Bj) 2 C~'(17) e
12 if j € f then 3 i=i4+1
13 ¢ < HardDecision(Lecumu)
14 s He' 14 index < argmax —1)CEA L (2
15 if s == 0 then N & ?ZZE{O’HM(() =)
15 return é < C/(index, :)
16 | break
17 il F LC’I?’V?L’M
18 np < [np/dscH]
1 é « HardDecision(L) B. Computation of Complexity Reduction for IDA Decoding
20 if (||Lotg — L||2 < 0||L||2 and é,qg == &) or s == 0 then
2 | break By modifying equation (1) in [32], the average/expected list
2 Loy, L+ L size can be expressed as
23 L éold — ¢

24 return é, s

list size can be determined based on the statistical information
of received LLRs.

The IDA decoding determines the list size by counting
the number of LLRs with a magnitude that is smaller than
a threshold ~« [32]. If the number of LLRs, which have a
magnitude that is smaller or equal to v, is smaller than the
threshold ¢, a small list size (L;,,,) is used [32]. Otherwise, a
large list size (Lp;g) is used. A low-complexity IDA decoding
for Chase decoders, M-IDA decoding, is proposed to use Ljoq,
if the (¢ — 1)-th smallest LLR magnitude of the received
vector is larger than the threshold ~ [33]. Otherwise, Lp;gn
is used. The M-IDA can be seen as a low-complexity variant
of the IDA, as it requires fewer comparisons and counting [33].
From [33], the M-IDA decoder is more suitable for the Chase
list decoder compared to another low-complexity variant, MD-
IDA. It is mentioned in [32] that a large v is used for a large
Ly, and a small «y is used for a small Ljg,,.

As IDA and M-IDA decoding have low complexities [32],
[33], using IDA or M-IDA as a pre-possessing tool will not
increase the complexity of the list decoder significantly. In this
work, the IDA decoder is used as a pre-processing tool for
the PA list decoder, and the pseudo-code of the IDA/M-IDA
simplified list IDA/M-IDA-Simp. List) decoder with proposed
complexity reduction techniques is shown in Algorithm 2.

L =6Liow + (1 = 8)Lnign, (12)

where § is the fraction of time that L;,,, is used to decode
[32]. In [32] and [33], the fraction of time ¢ and the average
list size L are found through the Monte Carlo simulation. In
this work, we postulate that ¢ is the probability of receiving
an LLR vector that can be decoded using L;,,,, and L can be
found using the computed §. For the additive white Gaussian
noise channel (AWGN) channel, the LLR [is computed as [46]

2
= Sy=4xRx 100 1% Ee/No s gy (13)

where y is the channel output, F} /Ny is in decibel [dB], and
R is the code rate. The channel output corresponding to the
LLR threshold 7 is

_ Y
Y = (4 x R x 10E+/Nox0.1)" (14)

As independent and identically distributed (i.i.d) code bits are
transmitted, and the symmetric AWGN channel and the binary
phase-shift keying (BPSK) modulation are used, the all-zeros
transmitted codeword can be used to compute the probability
of receiving a soft information vector that can be decoded by
Lj,,,. For IDA decoding, the probability of receiving an LLR

vector that can be decoded with L;,,, is

— P(l| <Alz=1)"*

I
3 Ay
I L
o
7N
s 3
N~

—

—

15)

where [is the LLR corresponding to the channel output y, and

Yy 1 _1 2
P <ale = 1) = | (- YDy a6

—y, V2mo? 20

For M-IDA, the probability of receiving an LLR vector that
can be decoded with L., is

() (11l > 7lz =)" P(I| < vl = 1)

2 (n)o-

Let the list size L be a random variable with two real-
izations L;,,, and Ly;gp, and the corresponding probabilities
are 9 and 1 — §. The list size only depends on the current
received LLR vector, and it does not depend on other list
sizes generated by previous and later received LLR vectors.
So, in the simulation, all list sizes generated by IDA or M-
IDA decoding are mutually independent and hence uncor-
related. It can be concluded that the list size L is an i.i.d
random variable. Also, the expected value of L? is bounded
(E[LQ} = 6Ll20'w (6)L}2ngh < L%ngh € IR) By the StI'OIlg
law of larger numbers [50], the empirical mean of the list size
returned from simulations converges to the expected value of
the list size almost surely as the number of simulation runs
goes to infinity.

”MNOMM

A7)

The complexity reduction produced by IDA decoding is
found through simulations in previous work [32], [33]. The
analytical computation for the reduced average list size helps
speed-up the process of parameter tuning for IDA decoding,
and it is also possible to extend to other channel models.

The uncorrelated normalized Rayleigh fading channel is
used as a demonstration. The normalized Rayleigh fading
channel distorts the transmitted signal as the following:

y=rxz+N, (18)

where r follows a normalized Rayleigh distribution [51]:
P(r) = 2rexp(—r?),
x € {—1,1} is the symbol of the BPSK modulation, and N

follows the Gaussian distribution with mean 0 and variance
o2. With the perfect state information (SI), the fading factor

P(|I] < ~lz = 1),

P(|I] < Ale = 1)@ P(|I] < vl = 1)

r is treated as a constant [52]. Without SI, the received signal
y follows the following distribution [52]:

1 (y —ra)?
P(yle) = W) p
olo) = [e (U550) POy
2202 22 o
2y exp gtz — 4o) exfe (M)

B (22 4 202)*
V2o exp(—4s)
V(2% +202)

19)

where erfc(-) is the complementary error function.
When there is no SI, the LLR of the normalized Rayleigh
fading channel can be computed as [52]:

Pyl =1)
Plylz = -1)

f(y)@ < 202(ﬁ+202))

£(y)@ <_\/202(ylm)

{=1In

(20)

=In

where
V20 exp(— 2UQ)
Vr(l+20?)

h), and h =

E(y) =

It can

®(h) = 1+ /The"’

be easily checked that

NV y — Plyly —
P(-yle = —1) = &(y)@< 202(1+202)>P(y| 1),

so the normalized Rayleigh fading channel is symmetric and
we can assume the all-zeros codeword is transmitted.
Similar to computing the average list size for the AWGN
channel, we need to convert the LLR threshold v to the
corresponding received signal y.. However, the explicit form
for the inverse of equation (20) is hard to derive, so it
is not straightforward to know whether there is a inverse
function between the threshold v and a received signal ..
The following theorem shows that equation (20) is bijective.

erfc(—

y .
\/202(1+202)

Theorem 1. Let h = \/ﬁ and the LLR under the

normalized Rayleigh fading channel is

) e
E)o(-h) " B(-h)

and equation (21) is bijective.

=1 21

Proof. The proof is composed of two steps to show equa-
tion (21) is bijective. The first step shows there exists a solution
h for arbitrary value [(i.e., surjection), and the second step
shows that the solution h for the given [is unique (i.e.,
injection).

Surjection: Given that [is a function of h (equation (21)), at
least one h exists for each and every [.

Injection: Instead of analyzing equation (21), it is suffice to

analyze the function after taking the exponential on both sides
of the equation (21), and we have

;Z(_h})l) = exp(l).
By taking the derivative with respect to (w.r.t) h, we have
d < o (h)) 2y/7 exp(h?) o
dh \ ®(—h) (v/mexp(h2)h erfc(h) — 1)2’

@(h)

which implies equation (22) > 0 and is monotonically
increasing w.r.t. h. Hence, equation (21) is also monotonically
increasing w.r.t. h, and the solution h for the given [is one-
to-one.

Conclusion: Equation (21) is bijective. O

Corollary 1.1. Since equation (21) is bijective, equation (21)
is invertible.

Since the explicit form for the inverse of the simplified
LLR equation (21) is still hard to derive, in this work, the
solution h., is found by solving the root finding problem given
a positive LLR threshold +:

P ()

B(—h,) PN =0

(23)

The root finding problem can be solved by the Newton’s
method given the expression in (23) and the derivative (22).
Once we obtain the value of A, using Newton’s method, the
received signal y, . can be derived by

Yiny = hyy X \/202(1 4 202). (24)

The corresponding received signal for the negative LLR
threshold —v (y—.) can be derived following the same pro-
cedure mentioned above. Since we can assume the all-zeros
codeword is transmitted, the probability of receiving a LLR
with a magnitude less or equal to v under the normalized

Rayleigh fading channel is
S S—— T
202(14 202)

(25)

Pl <ole=1)= [e

Y—r

The probability § of using L;,,, can be computed using the
same procedure for the AWGN channel.

C. Latency Analysis of the PA List Decoder

Based on the latency model of the hardware architecture
of the RPA decoder [40], we analyze the latency caused
by the key functional operations used in our proposed list
decoder. In order to use the latency model in [40], the
following theorem shows that the projection and aggregation
function for the s-dimensional subspace can be decomposed
into a series of compositions of projection to 1-dimensional
subspace. The projection to the 1-dimensional subspace is a
functional operation supported by the architecture [40].

Theorem 2. The projection function (2) for the s-dimensional
subspace can be decomposed into an s-level composition of
the projection to 1-dimensional subspaces.

Proof. For an arbitrary s-dimensional subspace, there are 2°
LLRs in the same coset, and we denote the projection function
for the s-dimensional subspace as

.
_ l;
hos(l1, 12, ..., l3s) = 2tanh ™" (Htanh <2>> . (26)

Equation (26) can be re-grouped as the following:
h25 (lla lQa (XX} 125)

98
= 2tanh ! (H tanh <ll>>
i=1 2
25 1

1
= 2tanh™! | tanh 52 tanh ™! H tanh)

-
tanh H tanh (lg)

i=25—141

1
—2tanh™?
2 an

1
= 2tanh™? (tanh <2h251 (I, 1, ...,1251))

1
tanh (2h251 (125—1+1, Z25—1+2, ceey l2<)>>

= ho(hge-1(l1, s, ..., I5:)),

125—1), hQs—l (l25—1+1, 125—1+2, ceey

where hy(A, B) = 2tanh ™' (tanh(A/2) tanh(B/2)) denotes
the 1-dimensional projection function. If we repeat the above
derivation for hgs—1(+), we have

higs 1 (11, D, ooy Lo 1)
— a(hgs—2 (11, L2y oo lye2),
hos—z2(lgs—2 11, lps-2 42, oy lps-1)),
and
hoe 1 (Ipe 111, Lot 4, oo 122
— Ba(hao2 (lyo—1 113 boe 19 oons oyt 1 90-2),

h25—2 (l25—1_‘_2:;—2+17 l25—1+25—2+2, ceey 125)).
By induction, we have

hoe = ha(ha(ha-..), ha(ha...)), 27)

which is an s-level composition of the 1-dimensional projec-
tion function. O

Since —tanh™'(z) = tanh '(—z) and —198,(T) ¢
{1, —1}, the aggregation function can be rewritten as

N _ L(z;)
—19/8,(D) [9¢ 1 d
anh H tanh 5
z €T \z
— 9tanh™! (_1:’4/13 (T) H tan (L(ZZ)>
2
2z €T\z

ly/]Bi(T)
= 2tanh™! <ta <+OO X 5

(28)

and there are 2° tanh(-) functions inside tanh™'(-). By
Theorem 2, the equation (28) can be reorganized as the
composition of the 1-dimensional projection function as well.

Given the new form of the projection function shown in
Theorem 2 and the aggregation function (28), the projection
unit in [40] can be used to realize the projection and the
aggregation function for the CPA decoder with SCH. Hence,
the latency of all PA decoders using the structure of the CPA
decoder with SCH is

=Nmaz * (2 * Sk tproj +traT + tdivider)

e

where tpro; = 1, tppr = 3, and tgivider = [logy(nm)]
are the latencies of the projection unit, the FHT decoder, and
averaging the aggregated results respectively. The number of
processing units implemented for the CPA decoder is denoted
as P € {27,p € {0,1,...,m}}. The latency is measured by
the number of clock cycles.

Compared to the RPA implementation in [40], the latency
caused by inserting input to the (r — 1)-level and the repeated
use of divider in the (r — 1)-level are removed because of the
non-recursive structure of the CPA/PCPA decoder. Since the
latency of the projection unit and the aggregation unit is the
same in [40], the latency of the aggregation function used by
the CPA decoder is the same as the latency of the aggregation
function used by the RPA implementation in [40]. The latency
caused by the input/output register is omitted in this analysis
because the latency caused by the decoding process is the main
focus of this work.

The latency of the list decoder for the CPA decoder with
SCH is

tim,r)
(29)

P dZSCH

timyy =m+ [o—1* (tgn,y +1) +10gy (L), (30)

Fepa

where m clock cycles are used by the bitonic sorter [53] to
construct the Chase-type list decoding, Pcpa is the number
of the CPA decoder built inside the list decoder, the one
extra cycle added to %,) is used to perform the syndrome
check and compute the posterior probability in parallel, and
log, (L) cycles are used to select the codeword with the largest
posterior probability in the list when using a single-elimination
tournament implementation.

VII. EXPERIMENTAL RESULTS
A. Experimental Setup

Experiments are performed over the BPSK modulation and
the AWGN channel while only experiments in Fig.4 are
performed over the normalized Rayleigh fading channel. The
Opt. PCPA decoder, which is implemented according to [29],
[31], with the saturation early stopping (4) is extended to list
decoders. For the Opt. PCPA decoder, 128 subspaces are used
for RM codes with m = 7, and 256 subspaces are used for
RM codes with m = 8. The maximum number of iterations
is Nyaz = []. The parameter of SCH (dscn) is set to 2,
and the syndrome check frequency ¢ is selected to achieve

—m— RM(7, 3) PCPA-128 Simp. List —@— RM(7, 4) PCPA-128 Simp. List
—e— RM(8, 3) PCPA-256 Simp. List

108
[
© 3
)
Z 107
106 T T T T T T T
20 91 92 93 24 25 96 27 28

0

Fig. 2. Average number of required operations for RM(7, 3), RM(8, 3), and
RM(7,4) measured at E}, /No = 3.5 dB, 2.5 dB, and 5 dB respectively.

TABLE III
PARAMETERS FOR IDA AND M-IDA DECODING.

RM(7, 3) RM(7,4) RM(8, 3)
IDA M-IDA IDA M-IDA IDA M-IDA
vy 45 0.2 4 1 4 0.05
© 66 - 14 - 190 -

the minimum average complexity measured by the weighted
counting rule shown in Table I for the list decoder. From
Fig. 2, the minimum average complexity is achieved at 6 = 16,
64, and 8 for the RM(7,3), the RM(8,3), and the RM(7,4)
codes respectively at selective Ej,/Ngs. The ML lower bounds,
computed by the method used in [15], are provided as a
reference for simulated RM codes, and they are computed
using our list decoder without IDA/M-IDA (Simp. list) decoder
with a list size of 16.

From Fig. 3 and 4, computed average list sizes (Ana.) match
average list sizes returned from simulations (Sim.) under both
the AWGN and the normalized Rayleigh fading channel.
Since the decoding performance of list decoders with IDA
can always be improved by tightening the parameter settings,
a fair comparison between list decoders with and without
IDA should conduct under a fixed complexity reduction. The
parameters of IDA and M-IDA decoding are searched in the
range shown in Fig. 3 such that a minimum degradation is
incurred at a selected E,/Ny (3.5 dB for RM(7,3) code,
2.5 dB for RM(8, 3) code, and 5 dB for RM(7, 4) code) given
a 30% average list size reduction. These parameters are shown
in Table III.

B. Results of Proposed List Decoders

From Fig. 5 (b), (e), and (h), it can be observed that the
average list size can be reduced to around 11 at 3.5 dB for
RM(7,3) codes, 2.5 dB for RM(8,3) codes, and 5 dB for
RM(7,4) codes, which is roughly a 30% reduction in the
average list size. From Fig. 5 (a), (d), and (g), all decoders

—m— v = 3.5, Sim. - 4 -y = 3.5, Ana. —— v = 4.0, Sim.
-4-v =4.0, Ana. —m— v = 4.5, Sim. v = 4.5, Ana.
M-IDA Sim. M-IDA Ana.

16

14

12 4

Avg. List Size

10 -

8
45 50 55 60 65 70 0.05 0.25

@ ¢
(a) IDARM(7, 3) (b) M-IDA RM(7, 3)

0.45 0.65

16 § 16 - —
g 14 14 -
3
Z 12 12
g
< 10 A 10
8 ’ 8 \\ T L —
5 05 1.5 25 35
®
(d) M-IDA RM(7, 4)
16
9 14 |
8
A 12
&
< 10
8 T T T T T
160 170 180 190 200 210 0.01 0.1 0.2
¥ ¥

(e) IDA RM(8, 3)

(f) M-IDA RM(8, 3)

Fig. 3. L of IDA-Simp. List and M-IDA-Simp. List for RM(7, 3), RM(8, 3),
and RM(7,4) codes at E,/Ng = 3.5 dB, 2.5 dB, and 5.0 dB respectively.

with IDA or M-IDA decoding have less than 0.1 dB loss in
decoding performance at a FER of 1074,

C. Comparisons with the AED-BP Decoder

Our proposed reduced-complexity PA list decoders are
compared with the state-of-the-art AED-BP decoder with a
maximum number of iterations of 200 and the reduced factor
graph [34]. The number of ensembles used by the AED-BP
is 16. The AED-BP with N,,,, = 200 is used to compare
the complexity with the proposed decoders. The AED-BP
with Npa, = 10 is used to compare the latency, which
will be explained in the later section. Fig. 5 (c), (f), and
(i) show the average number of operations using weights
shown in Table L. It can be observed that, for RM(7,3) and
RM(8, 3) codes, the complexity of proposed list decoders is
smaller than the AED-BP decoder at E},/Ny = 3.5 dB and

—— v = 2.5, Sim. - 4 -~ = 2.5, Ana. —— v = 3.0, Sim.

-4-v = 3.0, Ana. —m— v = 3.5, Sim. ~v = 3.5, Ana.
M-IDA Sim. M-IDA Ana.
16 Ty 16
h"nu{

g L] 14
w
Z 12 12
g
< 10 10

8 8w“‘\“‘\“‘\‘

70 75 80 85 90 0.02 0.1 0.18 0.26
¥ ®

(a) IDARM(7,3)

(b) M-IDA RM(7, 3)

Fig. 4. L of IDA-Simp. List and M-IDA-Simp. List for the RM(7,3) code
at Ey/No = 3.5 dB under the normalized Rayleigh fading channel.

Ey /Ny = 2.5 dB respectively. For RM(7,4) codes, the AED-
BP decoder requires fewer operations than list decoders at
Ey/Ny = 5.0 dB. From Fig.5 (g), the proposed list decoder
has 0.4 dB gain compared to the AED-BP decoder at a FER
of 2 x 10~% when decoding the RM(8, 3) code.

Besides comparing the average number of operations, we
investigate the number of operations in the worst-case scenario
(decoding without early stopping mechanisms) in Fig. 6. When
extended to the list decoder, the PCPA decoder with 128
subspaces and dscy = 2 is used for m = 7 RM codes, and
the PCPA decoder with 256 subspaces and dscy = 2 is used
for the RM(8, 3) code. The BP decoder with 200 iterations
and the reduced factor graph are used in the AED. The list
size for the simplified list decoder is 16, and 16 ensembles
are used in the AED. It can be observed that, in the worst-
case scenario, the simplified list decoder uses 6.8x fewer
operations compared to AED-BP when decoding RM(7, 3)
codes, 3.5x fewer operations compared to AED-BP when
decoding RM(8,3) codes, and uses 4.7x fewer operations
compared to AED-BP when decoding RM(7,4) codes.

D. Comparisons with the SCL Decoder

The complexity of the SCL decoder is counted using the
same rule in [54], which counts the operations of the f and g
functions, and the number of XORs for the partial sum. In [54],
the f function takes the min-sum form, which requires three
operations (two sign changes, and one operation for finding
the minimum), and the ¢ function takes two operations (one
sign change and one addition).

List sizes of SCL decoders are tuned to achieve similar
decoding performance as the Simp. List decoder. From Fig. 5,
SCL decoders with list sizes of 32, 1024, and 8 can approach
similar decoding performance to the Simp. List decoders for
RM(7,3), RM(8,3), and RM(7,4) codes respectively. It can
be observed that SCL decoders use an order of magnitude
lower numbers of operations compared to Simp. List decoders
and AED-BP decoders when decoding RM codes with rates
> 0.5 (RM(7,3) and RM(7,4) codes). When decoding low-
rate RM codes such as the RM(8, 3) code, the proposed list

13

—m— Simp. List —@— IDA-Simp. List —&— M-IDA-Simp. List —&— AED-BP, N,,, 45> = 200 —4— AED-BP N,,, 4, = 10 —+— SCL ML lower bound
10-1 20
i 107
-2 | R
10 16 & o) o 0]
i [5Y b
10-3 - a B
&] Z 12 | S 10°
10—4 - e < 3
] < {
i J
10—° 8
1 1 10° - : : !
10-6 : : : 4 - - - - - -
2 2.5 3 3.5 4 2 2.5 3 3.5 4 2 2.5 3 3.5 4
Ey/No [dB] Ey/No [dB] Ey/No [dB]
(a) RM(7, 3) (b) RM(7, 3) (c) RM(7, 3)
20 107
16 = 0 0
8) 106 - 3
o 2 : & \
g A 12 X
%) y =
< 105 B
8 -
10—° : : ! 4 - - 104 : :
3.5 4 4.5 5 3.5 4 4.5 5 3.5 4 4.5 5
Ey/No [dB] Ey/No [dB] Ey/No [dB]
(d) RM(7,4) (e) RM(7, 4) (f) RM(7,4)
20 108
N A
16 =] 0 0
8 [
<) 8
o 212 w107 1
g0 y <:E e e -
z | \:r
s | ' ’\ﬂ\‘\‘\:
4 - - - 106 : : :
1 1.5 2 2.5 3 1 1.5 2 2.5 3
Ey/No [dB] Ey/No [dB] Ey/No [dB]
(2) RM(8, 3) (h) RM(8, 3) i) RM(8, 3)

Fig. 5. FERs, average list sizes, and average numbers of operations of list decoders. Proposed list decoders (without IDA or M-IDA) and the AED-BP use a
list/ensemble size of 16. The SCL decoder uses list sizes of 32, 1024, and 8 for decoding RM(7, 3), RM(8, 3), and RM(7,4) codes respectively.

TABLE IV
THE E}/No REACHING A FER= 10—, THE Nynge FOR AED-BP AND PCPAgcy LIST DECODERS, THE LIST SIZE L FOR THE SCL DECODER, AND THE
LATENCY ESTIMATION IN THE NUMBER OF CLOCK CYCLES BASED ON EXISTING HARDWARE ARCHITECTURES. THE NOTATION — MEANS THE DECODER
DOES NOT REACH THE FER= 10~* WITHIN THE RANGE OF THE SIMULATION.

RM Codes ‘ AED-BP [56] AED-BP [56]

SR-List [41] PCPAscy List

| Ey/No [dB] Npae Latency | Ey/No [dB] Noao

Latency | E}/No [dB] L

Latency | Ep/No [dB] Nyjax Latency

RM(7, 3) 3.55 200
RM(7, 4) 4.80 200
RM(8, 3) - 200

1207 3.85 10
1207 4.92 10
1407 - 10

67 3.55 32 86
67 4.85 8 88
s 2.66 1024 121

3.55 4 68
4.85 4 76
2.53 4 73

B B rRM(7.3) PCPASCH Simp. List | B RM(7,3) AED-BP
0 B rRM(7.4) PCPAscy Simp. List I BRM(7,4) AED-BP
[l D RM(8,3) PCPAscy Simp. List] [RM(8,3) AED-BP

10% F

Worst-case Op.
=
o
S

10°

Decoders

Fig. 6. Comparisons of the number of operations in the worst-case scenario
(no early stopping) between the simplified list decoder extended from the
PCPA decoder with dgcy = 2 and the AED-BP with 200 iterations. 128 and
256 subspaces are used for m = 7 and m = 8 RM codes respectively. The
list size and the number of the ensemble are 16.

decoders require a similar or smaller number of operations to
the SCL decoder at a high E,/Ny (e.g., > 2.5 dB) region
that is interested by the actual applications such as the ultra-
reliable low-latency communication [55]. However, a list size
of 1024 is required by the SCL decoder to achieve a similar
decoding performance to the Simp. List decoder, which causes
a large decoding latency due to the serial nature of the SCL
decoders.

E. Latency Analysis

The latency of the SCL decoder can be characterized
into two parts [57], [58]: I), Latency induced by decoding;
I), Latency induced by the sorting process. The decoding
latency is modeled by the state-of-the-art low-latency hardware
architecture for the node-based SCL decoder, the sequential
repetition (SR) list (SR-List) decoder [41]. The latency of
performing the f function, the g function, and the partial sum
for the SC decoder is one clock cycle. The sorting process is
embedded into the computation inside the special nodes [41].

The latency of the AED-BP is estimated based on the
latency model of the hardware architecture for the BP list
(BPL) decoder [56]. Based on the hardware architecture for the
BPL decoder [56], the latency is composed of three parts: the
permutation and the inverse permutation, the computation of
the likelihood of returned codeword (one clock cycle), and the
decoding latency (N,,q. (m—1) clock cycles). The architecture

in [56] uses a sequential implementation, and it does not use
the likelihood to select the final codeword. In this work, we
assume that the likelihood is used to select the final codeword,
and log, (L) cycles are need to select the codeword with the
largest likelihood among the ensemble when using a single-
elimination tournament implementation. Since the permutation
unit in [56] is for the factor graph permutation, we assume a
specific hardware unit is implemented for each permutation
for the AED-BP, and this unit uses one clock cycle for both
the permutation and the inverse permutation.

In this latency analysis, full parallelism is assumed on
the AED-BP, the PCPA list decoder, and the SR-list de-
coder. Table IV shows the latency estimation when decoding
RM(7,3), RM(8,3), and RM(7,4) codes. Under the fully
parallel implementation, the proposed PCPA list decoder has
lower latency than the SCL decoder and the AED-BP decoder
with Np,q. = 200. In actual implementation, a small N,
is given to the BP decoder. We found that the AED-BP
decoder has a similar latency to the proposed list decoder
when N,,,, = 10. However, compared to other decoders,
Fig. 5 and Table IV show that the degradation in the decoding
performance will occur when setting N,,,, = 10. Hence,
we conclude that the proposed list decoder requires a smaller
decoding latency to reach the near ML decoding performance.

VIII. CONCLUSION

In this work, we propose complexity-reduction techniques
for the PA list decoder. A redesigned syndrome check pattern
and the SCH are first applied to the CPA/PCPA decoder.
The CPA/PCPA decoder with the redesigned syndrome check
pattern can return the syndrome check result alongside the
returned codeword. To reduce the average computational com-
plexity of the list decoder, we use the recently proposed IDA
decoding as a pre-possessing tool that adaptively determines
the list size based on the received soft information. We give
an analytical derivation to the average list size of list decoders
with IDA, and analytically derived results match the empirical
results. For list decoders with IDA decoding, the average list
size can be reduced by 30% with less than 0.1 dB decoding
performance loss at a FER of around 10~*. The proposed
reduced-complexity list decoders requires a smaller average
number of operations than the AED-BP decoder when decod-
ing RM(7,3) and RM(8, 3) codes. In the worst-case scenario,
the simplified list decoder uses a smaller number of operations
compared to the AED-BP decoder when decoding RM(7, 3),
RM(8, 3), and RM(7,4) codes. Proposed list decoders require

a smaller latency than the AED-BP and the SCL decoder to
reach near ML decoding performance.

ACKNOWLEDGMENT

The authors would like to thank Marzieh Hashemipour-
Nazari for the insight of calculating the number of FHT
decoding used in the RPA decoder with multi-factor pruning.

[1]

[2]

[6]

[7

—

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]
(23]

[24]

REFERENCES

D. E. Muller, “Application of boolean algebra to switching circuit design
and to error detection,” Trans. of the LR.E. Professional Group on
Electronic Computers, vol. EC-3, no. 3, pp. 6-12, 1954.

E. Arikan, “A survey of Reed-Muller codes from polar coding per-
spective,” in 2010 IEEE Information Theory Workshop on Information
Theory (ITW 2010, Cairo), 2010, pp. 1-5.

——, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” [EEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051-3073, 2009.

“TS 38.212 NR; multiplexing and channel coding V17.1.0,” 3GPP,
Technical Specification (TS), Mar. 2022.

S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Sasoglu, and R. L.
Urbanke, “Reed—Muller codes achieve capacity on erasure channels,”
IEEE Trans. Inform. Theory, vol. 63, no. 7, pp. 4298-4316, 2017.

E. Abbe, A. Shpilka, and A. Wigderson, “Reed—Muller codes for random
erasures and errors,” IEEE Trans. Inform. Theory, vol. 61, no. 10, pp.
5229-5252, 2015.

O. Sberlo and A. Shpilka, “On the performance of Reed-Muller codes
with respect to random errors and erasures,” in Proc. of the Thirty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA
’20. USA: Society for Industrial and Applied Mathematics, 2020, p.
1357-1376.

G. Reeves and H. D. Pfister, “Reed—Muller codes on BMS channels
achieve vanishing bit-error probability for all rates below capacity,” IEEE
Trans. Inform. Theory, pp. 1-1, 2023.

E. Abbe and C. Sandon, “A proof that Reed-Muller codes achieve Shan-
non capacity on symmetric channels,” in IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), 2023, pp. 177-193.

E. Abbe and M. Ye, “Reed-Muller codes polarize,” IEEE Trans. Inform.
Theory, vol. 66, no. 12, pp. 7311-7332, 2020.

I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Trans. of the IRE Professional Group on Information Theory,
vol. 4, no. 4, pp. 3849, 1954.

E. Arikan, H. Kim, G. Markarian, U. Ozgiir, and E. Poyraz, “Perfor-
mance of short polar codes under ML decoding,” in Proc. ICT Mobile
Summit 2009, (Santander, Spain), 10-12 June 2009.

R. R. Green, “A serial orthogonal decoder,” JPL Space Programs
Summary, vol. 37, pp. 247-253, 1966.

Y. Be’ery and J. Snyders, “Optimal soft decision block decoders based
on fast Hadamard transform,” IEEE Trans. Inform. Theory, vol. 32, no. 3,
pp. 355-364, 1986.

1. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inform.
Theory, vol. 61, no. 5, pp. 2213-2226, 2015.

I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp.
1260-1266, 2006.

N. Stolte, U. Sorger, and G. Sessler, “Sequential stack decoding of binary
Reed-Muller codes,” ITG FACHBERICHT, pp. 63-70, 2000.

N. Stolte and U. Sorger, ““Look-Ahead” soft-decision decoding of
binary Reed-Muller codes,” in International Symposium on Information
Theory and Its Applications, Honolulu, HA, Nov., 2000.

K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters,
vol. 48, no. 12, pp. 695-697, 2012.

——, “CRC-aided decoding of polar codes,” IEEE Commun. Lett.,
vol. 16, no. 10, pp. 1668-1671, 2012.

V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Commun. Lett., vol. 18, no. 7, pp. 1127-1130, 2014.

M.-O. Jeong and S.-N. Hong, “SC-Fano decoding of polar codes,” [EEE
Access, vol. 7, pp. 81 682-81 690, 2019.

E. Arikan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594, 2019.

P. Yuan and M. C. Coskun, “Complexity-adaptive maximum-likelihood
decoding of modified GN-coset codes,” in IEEE Information Theory
Workshop (ITW), 2021, pp. 1-6.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]
[47]

(48]

S. A. Hashemi, N. Doan, W. J. Gross, J. Cioffi, and A. Goldsmith, “A
tree search approach for maximum-likelihood decoding of Reed-Muller
codes,” in IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1-6.
M. Ye and E. Abbe, “Recursive projection-aggregation decoding of
Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 66, no. 8, pp.
4948-4965, 2020.

J. Li, S. M. Abbas, T. Tonnellier, and W. J. Gross, “Reduced complexity
RPA decoder for Reed-Muller codes,” in 11th International Symposium
on Topics in Coding (ISTC), 2021, pp. 1-5.

D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse
multi-decoder recursive projection aggregation for Reed-Muller codes,”
in IEEE International Symposium on Information Theory (ISIT), 2021,
pp. 1082-1087.

M. Lian, C. Higer, and H. D. Pfister, “Decoding Reed—Muller codes
using redundant code constraints,” in /[EEE International Symposium on
Information Theory (ISIT), 2020, pp. 42-47.

Q. Huang and B. Zhang, “Pruned collapsed projection-aggregation
decoding of Reed-Muller codes,” CoRR, vol. abs/2105.11878, 2021.
[Online]. Available: https://arxiv.org/abs/2105.11878

J. Li and W. J. Gross, “Optimization and simplification of PCPA decoder
for Reed-Muller codes,” IEEE Commun. Lett., vol. 26, no. 6, pp. 1206—
1210, 2022.

C. Condo, “Input-distribution-aware successive cancellation list decod-
ing of polar codes,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1510-1514,
2021.

C. Condo and A. Nicolescu, “Input-distribution-aware parallel decoding
of block codes,” in 11th International Symposium on Topics in Coding
(ISTC), 2021, pp. 1-5.

M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink,
“Automorphism ensemble decoding of Reed—Muller codes,” IEEE Trans.
Commun., vol. 69, no. 10, pp. 6424-6438, 2021.

M. C. Coskun and H. D. Pfister, “An information-theoretic perspective
on successive cancellation list decoding and polar code design,” IEEE
Trans. Inform. Theory, vol. 68, no. 9, pp. 5779-5791, 2022.

B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” IEEE Commun.
Lett., vol. 16, no. 12, pp. 2044-2047, 2012.

M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolu-
tional (PAC) codes: Sequential decoding vs list decoding,” IEEE Trans.
Veh. Technol., vol. 70, no. 2, pp. 1434-1447, 2021.

A. Mozammel, “Hardware implementation of Fano decoder for
polarization-adjusted convolutional (PAC) codes,” IEEE Trans. Circuits
Syst. II, vol. 69, no. 3, pp. 1632-1636, 2022.

M. Ebada, S. Cammerer, A. Elkelesh, M. Geiselhart, and S. t. Brink,
“Iterative detection and decoding of finite-length polar codes in Gaussian
multiple access channels,” in 54th Asilomar Conference on Signals,
Systems, and Computers, 2020, pp. 683—-688.

M. Hashemipour-Nazari, Y. Ren, K. Goossens, and A. Balatsoukas-
Stimming, “Pipelined architecture for soft-decision iterative projection
aggregation decoding for RM codes,” IEEE Trans. Circuits Syst. I, pp.
1-0, 2023.

Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang,
and A. Burg, “A sequence repetition node-based successive cancellation
list decoder for 5G polar codes: Algorithm and implementation,” IEEE
Trans. Signal Processing, vol. 70, pp. 5592-5607, 2022.

E. Abbe, A. Shpilka, and M. Ye, “Reed—Muller codes: Theory and
algorithms,” IEEE Trans. Inform. Theory, vol. 67, no. 6, pp. 3251-3277,
2021.

J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288-1299, 2005.

C. Bliek, P. Bonami, and A. Lodi, “Solving mixed-integer quadratic
programming problems with IBM-CPLEX: a progress report,” in Pro-
ceedings of the Twenty-Sixth RAMP Symposium, Hosei University,
Tokyo, Oct. 16-17 2014.

T. Clevorn and P. Vary, “The box-minus operator and its application to
low-complexity belief propagation decoding,” in IEEE 61st Vehicular
Technology Conference, vol. 1, 2005, pp. 687-691 Vol. 1.

T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. USA: Wiley-Interscience, 2005.

E. Arikan, “Systematic polar coding,” I[EEE Commun. Lett., vol. 15,
no. 8, pp. 860-862, 2011.

L. Li and W. Zhang, “On the encoding complexity of systematic polar
codes,” in 28th IEEE International System-on-Chip Conference (SOCC),
2015, pp. 415-420.

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Hashemipour-Nazari, K. Goossens, and A. Balatsoukas-Stimming,
“Multi-factor pruning for recursive projection-aggregation decoding of
RM codes,” in IEEE Workshop on Signal Processing Systems (SiPS),
2022, pp. 1-6.

K. L. Chung, A course in probability theory. Academic press, 2001.
R. Asvadi, A. H. Banihashemi, M. Ahmadian-Attari, and H. Saeedi,
“LLR approximation for wireless channels based on Taylor series and
its application to BICM with LDPC codes,” IEEE Trans. Commun.,
vol. 60, no. 5, pp. 1226-1236, 2012.

R. Yazdani and M. Ardakani, “Linear LLR approximation for iterative
decoding on wireless channels,” IEEE Trans. Commun., vol. 57, no. 11,
pp. 3278-3287, 2009.

K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, spring joint computer conference, 1968,
pp. 307-314.

H. Zhou, W. Song, W. J. Gross, Z. Zhang, X. You, and C. Zhang, “An
efficient software stack sphere decoder for polar codes,” IEEE Trans.
Veh. Technol., vol. 69, no. 2, pp. 1257-1266, 2020.

M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja,
C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and
B. Vucetic, “Short block-length codes for ultra-reliable low latency
communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130-137,
2019.

Y. Ren, Y. Shen, L. Zhang, A. T. Kristensen, A. Balatsoukas-Stimming,
E. Boutillon, A. Burg, and C. Zhang, “High-throughput and flexible
belief propagation list decoder for polar codes,” IEEE Trans. Signal
Processing, vol. 72, pp. 1158-1174, 2024.

A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Processing, vol. 63, no. 19, pp. 5165-5179, 2015.

Y. Tao, S.-G. Cho, and Z. Zhang, “A configurable successive-cancellation
list polar decoder using split-tree architecture,” IEEE J. Solid-State
Circuits, vol. 56, no. 2, pp. 612-623, 2021.

