1458

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

Reduced-Complexity Projection-Aggregation List
Decoder for Reed-Muller Codes

Jiajie Li", Graduate Student Member, IEEE, Huayi Zhou",

Marwan Jalaleddine™, Graduate Student Member, IEEE, and Warren J. Gross

Abstract— Projection-aggregation decoders have been used
in conjunction with a list structure to achieve near
maximum-likelihood decoding for short-length and low-rate
Reed-Muller (RM) codes but suffer from high computational
complexity. We reduce the worst-case computational complexity
of projection-aggregation (PA) decoders by more than 50%
using a scheduling scheme compared to PA decoders without
the scheduling scheme, and propose a redesigned syndrome
check pattern to avoid repeated syndrome computations in
the decoder. A latency model based on the existing hardware
architecture is proposed. Input distribution aware (IDA) decoding
is adopted as a pre-possessing tool, and the average list size
when using IDA decoding is analytically derived under additive
white Gaussian noise and uncorrelated normalized Rayleigh
fading channels. Using IDA, the average list size is reduced by
30% with less than 0.1 dB loss. The proposed list decoders
require a smaller computational complexity than the state-of-the-
art iterative decoder, automorphism ensemble decoding with the
belief propagation constituent decoder (AED-BP) for decoding
RM(7,3) and RM(8, 3) codes. Based on the developed latency
models, the PA list decoder has a smaller latency than the
AED-BP and the successive cancellation list decoder to reach
near maximum-likelihood decoding performance.

Index Terms—IDA decoding, list decoders, Reed-Muller codes,
projection-aggregation decoders.

I. INTRODUCTION

EED-MULLER (RM) codes [1] have recently attracted

a lot of interest in the research community due to their
close structural similarities [2] with capacity-achieving polar
codes [3] that have been adopted into the 5G communi-
cation standard [4]. Similar to polar codes, recent research
works show that RM codes achieve the capacity of various
channels, such as the binary erasure channel [5], the binary

Received 1 May 2024; revised 14 August 2024; accepted 1 September 2024.
Date of publication 12 September 2024; date of current version 19 March
2025. Huayi Zhou is personally supported in part by National Science
Foundation of China (NSFC) under Grants 62201395 and Jiangsu Provincial
Natural Science Foundation under Grants BK20210044. The associate editor
coordinating the review of this article and approving it for publication was P.
Trifonov. (Corresponding author: Jiajie Li.)

Jiajie Li, Marwan Jalaleddine, and Warren J. Gross are with the
Department of Electrical and Computer Engineering, McGill University,
Montreal, QC H3A OE9, Canada (e-mail: jiajie.li@mail.mcgill.ca; marwan.
jalaleddine @mail.mcgill.ca; warren.gross@mcgill.ca).

Huayi Zhou was with the Department of Electrical and Computer Engineer-
ing, McGill University, Montreal, QC H3A OE9, Canada. He is now with the
National Mobile Communications Research Laboratory, Southeast University,
Nanjing 210018, China, and also with Purple Mountain Laboratories, Nanjing
210023, China (e-mail: huayi.zhou@mail.mcgill.ca).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCOMM.2024.3459851, provided by the authors.

Digital Object Identifier 10.1109/TCOMM.2024.3459851

, Fellow, IEEE

symmetric channel [6], [7], and the binary memoryless sym-
metric channel [8], [9]. Additionally, RM codes are proven to
have a polarization effect, a property that contributes to the
capacity-achieving ability of polar codes [10].

The first decoder for RM codes is Reed’s majority-vote
decoder [11] that can correct error patterns with a weight less
than half of the minimum distance. RM codes have excellent
maximum likelihood (ML) decoding performance because of
their large minimum distance [12]. Achieving this ML decod-
ing performance for first-order RM codes is possible with
the use of the low computational complexity fast Hadamard
transform (FHT) decoder [13], [14]. For higher-order RM
codes, Dumer’s list decoder, which is structurally similar to
successive cancellation (SC) list (SCL) decoding [15], can
be used to approach the ML performance at the cost of
a large enough list size [16]. There are other sequential
decoders that can achieve the ML decoding performance with
an average complexity equal to one SC decoding attempt but
these decoders have their own drawbacks. For example, the SC
stack (SCS) decoder [17], [18], [19], [20], [21] requires a large
memory complexity to achieve ML decoding performance, and
the SC-Fano [22], [23] and the SC ordered-search (SCOS)
decoders [24], [25] require multiple backtracking attempts
that cause large decoding latency in the worst-case scenario.
Details of the summary of the existing techniques are in
Section II.

When decoding short-length and low-rate RM codes,
a recently proposed recursive projection-aggregation (RPA)
decoder shows superior decoding performance than Dumer’s
list decoder, and the RPA list decoder extension can
achieve ML decoding performance under various rates and
lengths [26]. However, since the computational complexity of
RPA increases with the order of RM codes, RPA decoders can
be seldom used with higher-order RM codes [26].

Many techniques and variants have been developed to
reduce the complexity of RPA decoders. For RPA decoders,
an early stopping criterion based on the syndrome check and a
scheduling scheme based on the sign change per iteration are
proposed to reduce the average complexity and the worse-case
complexity respectively [27]. A sparse multi-decoder variant
of the RPA decoder (SRPA) reduces the complexity by using a
subset of subspaces [28]. The collapsed projection-aggregation
(CPA) decoder removes the recursive structure in the RPA
decoder [29]. For CPA decoders, a pruning metric [30], which
can be used to construct a pruned CPA (PCPA) decoder, and
an optimized pruning method [31] are proposed to remove

0090-6778 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2390-0664
https://orcid.org/0000-0002-1745-4135
https://orcid.org/0000-0003-2550-3619
https://orcid.org/0000-0002-6226-6037

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

subspaces that are likely to return similar decoding results. For
the ease of explanation in this work, the RPA decoder and its
variants are referred as projection-aggregation (PA) decoders.

When extending the PA decoder to a Chase-type list
decoder, Reed’s majority-vote decoder is used as the post-
processing decoder [26]. The output from the Reed’s decoder
is a RM codewords, which ensures all decoded codewords are
RM codewords when performing the ML-in-the-list selection
in the list decoder. A simplified list decoder proposed in [31]
uses a syndrome check to replace the Reed’s decoder, and
decoded codewords, which have an all-zeros syndrome, will
be used by the ML-in-the-list selection in the simplified list
decoder.

Prior work focused on reducing the computational com-
plexity of PA decoding without attempting to reduce the
complexity of the PA list decoding. In this work, we introduce
several modifications to reduce the computational complexity
of the PA list decoder. It should be noted that parts of the
techniques used in this work were previously discussed in [27]
and [31] whereby the syndrome check pattern, the scheduling
scheme, the optimized criterion for pruning the CPA, the
optimized PCPA (Opt. PCPA), and the simplified list decoder,
are devised. This article builds on the earlier work in the
following ways:

1) We introduce a redesigned syndrome check pattern, use
this new pattern alongside the scheduling scheme [27],
and test the pattern with the Opt. PCPA decoder. These
techniques not only reduce the complexities but also
return the syndrome check result alongside the decoded
codeword to avoid the repeated syndrome computation
when extended to the simplified list decoder.

2) The Opt. PCPA decoder with the scheduling scheme
reduces the worst-case complexity by more than 50%
compared to the Opt. PCPA decoder without the schedul-
ing scheme. The Opt. PCPA decoder with redesigned
syndrome check pattern and scheduling scheme is
extended to the simplified list decoder.

3) A latency model based on the existing hardware archi-
tecture is proposed for the list decoder.

4) We use the input-distribution-aware (IDA) method [32],
[33] to determine the list size for the list decoder based
on the received soft information.

5) We propose a method to compute the average list size of
the IDA decoding given the channel model and assump-
tions on the transmitted data. This differs from the prior
works [32], [33] that determine the list size through
Monte Carlo simulations.

A RM code with the order and the code length parameter
m is defined as RM(m, r). Numerical experiments are con-
ducted on RM(7, 3), RM(8, 3), and RM(7,4) codes. By using
IDA decoding as a pre-processing tool, the average list size
of list decoders can be reduced by 30% with less than 0.1 dB
performance loss at a FER of around 10~%. Average list sizes
returned from the proposed method are similar to analytical
results. When decoding RM(7, 3) and RM(8, 3) codes, the pro-
posed reduced-complexity PA list decoder requires a smaller
average complexity than the state-of-the-art automorphism

1459

ensemble decoding (AED) with the belief propagation (BP)
constituent decoder (AED-BP) [34]. Also, the proposed list
decoder has 0.4 dB gain compared to the AED-BP decoder at
a FER of 2 x 10~* when decoding the RM(8, 3) code under
the same list/ensemble size of 16. The simplified list decoder
has 6.8x, 3.5%, and 4.7x smaller worst-case complexity than
AED-BP when decoding RM(7,3), RM(8, 3), and RM(7,4)
codes respectively. According to the latency model based on
the state-of-the-art hardware architecture, the proposed list
decoder has a smaller latency than the AED-BP and the SCL
decoder.

This work is structured as the following. Section II
gives a summary of existing sequential decoding tech-
niques. Section III provides necessary backgrounds of RM
codes, PA decoders, and some complexity reduction methods.
Section IV presents a systematic method to calculate the
number of operations required by each functional operation in
the PA and its list decoders which helps analyze the methods
proposed in this work. Section V introduces the redesigned
syndrome check pattern and discusses how to select subspaces
that are kept in the scheduling scheme. Section VI analyzes
the complexity reduction brought by the IDA decoding, and
explains the proposed latency model. Experimental results are
shown in Section VII. Conclusions are drawn in Section VIII.

II. SUMMARY OF RELATED WORKS

The SCL/recursive list decoders [15], [16] can return near
ML decoding performance. It is empirically [16] and theo-
retically [35] observed that the recursive list decoder with a
list size of 1024 is required to achieve near ML decoding
performance for some RM codes [16]. Methods like the
adaptive list decoder [36] reduce the average complexity when
a large list size is needed for decoding. However, a large worst-
case complexity and a large decoding latency still exist for the
adaptive list decoder [36].

Many other decoder types are also developed alongside
the list decoding approach. The idea of adopting stack into
the recursive and sequential decoders for RM codes is con-
sidered in [17], an improved stack-based decoder with the
“Look-Ahead” (incorporate not-yet-processed bits/nodes) eval-
uation metric is proposed in [18], and these decoders achieve
near ML decoding performance given a sufficient stack size.
Similar research trends appear for polar codes, where the
SCS decoder [19], [20] is used to improve the decoding
performance and the SCS decoder with a “Look-Ahead”
(incorporate not-yet-processed frozen bits) metric is proposed
in [21]. While having a lower average complexity than the
SCL/recursive list decoder, it is observed that a stack size
> 100 is required to achieve near ML decoding performance
for some RM and polar codes, which incurs a large memory
complexity.

For RM and polar codes, another type of sequential
decoders, the SC-Fano decoder achieves near ML decoding
performance as well [22], [23]. The SC-Fano decoder has a
smaller memory requirement compared to the SCS decoder,
and it has competitively low average complexity equal to
one SC decoding attempt. However, the SC-Fano decoder
for RM and polar codes requires a larger time complexity

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1460

than SC, SCL, and SCS decoders [37], and it also has a
larger decoding latency than the SCL decoder in the hardware
implementation [38].

A recently proposed ordered-search variant [24], [25] of
the SC decoder also achieves ML decoding performance
of RM codes using competitively low average complexity
such as an average complexity equal to one SC decoding
attempt [24]. These SC ordered-search variants are much
easier to tune to achieve ML decoding performance compared
to the SC-Fano decoders. In the worst-case scenario, the SC
ordered-search decoders [24], [25] require multiple backward
tree search/node-visits in the sequel to reach the ML decoding
performance, and have a complexity that is equal to several
(e.g., > 100) SC decoding attempts. These sequential attempts
might cause high worst-case latency in the hardware imple-
mentation, so the impact due to the worst-case complexity
needs to be further investigated.

The decoding structure of the PA decoder allows parallel
implementation [26], which is a crucial factor that affects the
decoding latency and throughput [26]. Also, the PA decoder
requires a small memory complexity (e.g., 4n for the RPA
decoder, 5n for the RPA list decoder, and n is the code
length) [26]. Moreover, unlike the hard-decision output nature
of many SC/recursive decoders mentioned above, the soft-
in/soft-out nature of the PA decoder is suitable for iterative
detection and decoding [39] according to [34]. A hardware
implementation of a PA decoder, iterative PA decoder, without
any early stopping criterion [40] shows a higher throughput
and a lower decoding latency than a state-of-the-art SCL
decoder implementation [41] for polar codes. Hence, the
PA and PA list decoders are good complements to existing
techniques mentioned above. However, the implementation of
the iterative PA decoder has a higher power consumption than
the SCL decoder implementation [40], which is partially due
to the high computational complexity (both the average and the
worst-case complexity). Our work aims to provide a systematic
approach for reducing the complexity/power consumption of
the PA decoder.

III. PRELIMINARIES
A. Notations

Matrices are denoted as bold upper-case letters (M), and
vectors are denoted as bold lower-case letters (v) unless stated
otherwise. The transpose operator is denoted as ', and a
projection based on the coset of a subspace B; is represented
by the subscript /B;. The index in binary representation is
denoted as z.

B. RM Codes

RM codes can be defined by two parameters m and r, and
0 < r < m. The generator matrix for the RM(m,m) code
(G(m,m)) can be obtained by applying the m-th Kronecker
power of the base matrix F' [2]:

G(m,m)=F®" F = E (1)]) (1)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

The generator matrix for the RM(m,r) code (G(m,7)) is
composed of rows that have the k = ;= (") largest
Hamming weight in G(m, m), and the rate of the RM(m, r)
code is R = k/n, where n = 2™. The parity check matrix
H of the RM(m,r) code is the generator matrix of the
RM(m,m —r — 1) code (H = G(m,m —r — 1)) [42], and
valid codewords ¢ € RM(m,r) have an all-zeros syndrome
vector s = He' = 0.

C. Projection-Aggregation Decoder

PA decoders are composed of three phases: i) projection; ii)
decoding of » = 1 RM sub-codes; and iii) aggregation. These
three phases are repeated iteratively to produce the decoded
codeword.

i): Order r of RM(m,) codewords is reduced by projecting
to s-dimensional subspaces until reaching RM(m — r + 1,1)
sub-codes, where 1 < s < r — 1. The projection function for
the LLR vector L is

Lp,(T) = 2tanh™" (H tanh (L(;))> , 2

zeT

where T is the coset of the s-dimensional subspace IB;, and
the coset 1" has a size 2°. Two main PA decoders, the RPA
decoder and the CPA decoder, perform the projection step as
the following:

e RPA decoders project the received codeword or the
log-likelihood ratio (LLR) vector to ng = n — 1 one-
dimensional subspaces, produce n — 1 different
RM(m — 1,7 — 1) sub-codes, and reduce the order r by
1 in every recursion.

o CPA decoders project the received codeword or the LLR
vector to ng = (")) , different (r — 1)-dimensional

subspaces, and produce RM(m — r 4+ 1,1) sub-codes
without recursions.

ii): RM(m — r + 1,1) sub-codes are decoded by the FHT
decoder. The code bit g, (7T") of decoded RM(m —r +1,1)
sub-codes is an estimation of the parity check of code bits in
a coset 7.

iii): In the aggregation phase, the estimation of the received
LLR vector of the RM(m,) codeword (L) is recovered. For
both the RPA decoder and the CPA decoder, each LLR is
computed according to the § 5, (7') and all other LLRs in the
same coset. Then, results from all subspaces are aggregated:

np
Lcumu(z) = Z —1Q/IB,i (1)
=1

2tanh~* H tanh (L(;Z)> . (3

2z, €T\z

The average of the aggregated LLR vector (i = Leymu/nB)
is either fed to the next iteration, or hard decisions of the
results are used to output the decoded codeword.

According to [31], a saturation-based early stopping is
devised to stop decoding if two consecutive iterations return
the same result and if the difference of LLR vectors between

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

these consecutive iterations is smaller than a pre-defined
threshold:

IL — L||2 < 6]|L|

g, and ¢; = €;_1 1 € [1, Nypaa|, (4

where 6 is a small constant, || - || denotes the L2 norm, and
Npae 18 the maximum number of iterations. The LLR vector
of the previous iteration is denoted by L. The LLR of the
current iteration is denoted by L. The hard decision of LLR
vectors for current and previous iterations are denoted as ¢;
and ¢;_; respectively. Furthermore, a syndrome-based early
stopping can be used in the PA decoder [27], whereby the
syndrome is checked after aggregating a number of decoded

results from subspaces, and the decoding stops when

He =o. (5)

If early-stopping criteria are not satisfied, L is used as the
LLR vector L for the next iteration. The hard decision of L
is used as the decoded codeword when the maximum number
of iteration N,,,, is reached or early stopping criteria are
satisfied [26], [27], [29].

D. Approximated PA Decoder

According to [31] and [27], the equation of projection (2)
can be replaced by the min-sum approximation [43]. In this
work, sign(-) represents the function of computing the sign
of inputs, and the LLR magnitude is denoted by |L(z)|. The
min-sum approximation of (2) is

L;s,(T) =~ (][sign(L(2)) min{|L(2)|,V z € T}. (6)

The hyperbolic tangent and the inverse hyperbolic tangent
portion of the aggregation (3) can be approximated by the
min-sum accordingly,

[sien(Z()

z €T \z
min({|L(z;)|, V z; € T\ z}). (7

np
Lcumu(z) ~ Z _ly/]Bi(T)(
=1

E. Optimized PCPA Decoder

It is shown in [30] that projections to subspaces might have
similar error patterns if their subspaces are similar, and the
probability of having similar error patterns is

1 r—1
p— 5[1 + (1 . 2€>(2()+172UB1’ ﬂ]BjD]’ (8)

where IB; and IB; are two subspaces, and ¢ is the probability
of an independent error occurs in the received vector. Based
on (8), a correlation coefficient is proposed to measure the
similarity of subspaces in the CPA decoder:

IS |S] .
dim(B; N B;)
’I"SZ:ZZ’I’U andrij 127””11 J , (9)
=1 j=1
where 7;; is the pair-wised correlation between B; and Bj,
S is the set of subspaces, rg is the set correlation for S,
and dim(-) is the function to compute the dimension of the

1461

intersection of two subspaces. In equation (9), ¢ and j index
subspaces in S. |S| denotes the size of the set of subspaces
S. Then, pruning can be performed based on the correlation
metric, and a subset that has the least similar subspaces is
constructed based on (9). The smaller the rg, the better the
subspace collection S, and finding a .S with a small rg can
be transformed into a mixed-integer quadratic programming
problem [31]:

minuRu ", s.t. u; € {0,1} Yu; € u, lu' = |S

u

. (10

where u; = 1 if the subspace B; € S, and u; = 0 otherwise.
R is a matrix that stores all values r;;, and it is symmetric and
positive semi-definite if diagonal entries are properly scaled by
adding a diagonal positive semi-definite matrix [44]. The all-
ones vector is denoted by 1. Methods have been proposed to
solve (10) and produce Opt. PCPA decoders in [31].

F. Projection-Aggregation List Decoder

The list decoder extension of PA decoders is a Chase
decoder [26]. First, positions corresponding to ¢ smallest
LLR value in terms of magnitude (|L(z)|) and the maxi-
mum LLR magnitude of L (max,(|L(z)|)) are found, where
L(z) € L. Then, LLRs in these ¢ positions are replaced with
+max, (|L(z)|) or £2max,(|L(z)|). There are 2! possible
cases, so the list size is 2. These 2 cases are decoded by
the PA decoder independently. But the decoded codeword of
RPA/CPA decoders is not necessarily a RM codeword. Reed’s
decoder is used to correct the decoded codewords to valid
RM codewords [26], or a syndrome check is used to filter
out decoded codewords that are not RM codewords [31]. The
codewords returned from the Reed’s decoder or PA decoder’s
results with an all-zeros syndrome vector are included in the
list, and the codewords with the largest posterior probability
in the list will be returned from the list decoder [26], [31].

IV. COMPLEXITY ANALYSIS OF
PROJECTION-AGGREGATION DECODERS

Given all proposed complexity reduction techniques,
a throughout complexity analysis is needed to demonstrate
the effectiveness of proposed techniques and parameter tuning.
In this work, the complexity analysis follows a weighted count
modified from the rule proposed in [34], and the weight is
shown in Table I. In [34], BP decoding is assumed to use
the box plus and the box minus approximation [45]. In this
work, the PA decoder is assumed to use the min-sum approxi-
mation, when the complexity is counted. This work considers
projection, FHT decoding, aggregation, and syndrome checks
as key functional operations of the PA decoder. Weights of
these functional operations are computed as the following.

Projection: From the approximated projection (6), signs
of LLR in the same coset are multiplied, and the minimum
LLR magnitude is searched among the coset. When projecting
to d-dimensional subspaces, each coset contains D = 2d
LLRs, where d = r — 1 for the CPA/PCPA decoder. For
a coset size D, D — 1 pair-wised multiplications of signs
(sign(z)sign(y)) and pair-wised comparisons for finding the

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1462

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

TABLE I

WEIGHTS OF KEY FUNCTIONAL OPERATIONS OF PA AND ITS LIST DECODERS, WHERE d = r—1, D = 2%, N Is THE NUMBER OF DECODED SUBCODES,
Ngyn IS THE NUMBER OF SYNDROME CHECKS, AND Nirgr. IS THE NUMBER OF ITERATIONS

Operation | Weight | 2-input B [34] | Projection

FHT \

Aggregation

| ML out of L | FFG BP Stopping [34] | Syndrome Stopping

(n d)2“ d

sign(z)sign(y) 1 N N(D —1)2m—4 N(D - 2)n 0 Nieer. (B2 +2n — 1) 0

sign(z)y 1 N Nom—d N2n Ln 0 0

min(|z|, |y|) 1 N N(D —1)2m—d N(D - 2)n 0 0 0

max(z, y) 1 0 0 N(2™ *d 0 L-1 0 0

f+(|lz|) LUT 1 2N 0 0 0 0 0 0

zty z—y 1 AN 0 N@2m=%4(m — d)) n(N —1) L(n—1) 0 0

Ty 3 0 0 0 N“e, n 0 0 0

AND(z,) 1 0 0 0 0 0 Neyn(k(n — k) + “5% (n — k + 1))
XOR(z,y) 1 0 0 0 0 0 Nsyn((k = 1)(n— k) + 255 (n — k + 1))
Weighted total | | 9N | N@D —12m= | (A p1)am=d 1) | (N@D~1) = 143Niee)n | 2Ln—1 | Nyee(™2 420-1) | Nsyn(2k(n — k) + (n k)?)

minimum magnitude (min(|z|, |y|)) are needed. When project-
ing to a d-dimensional subspace, the projection operation is
repeated 2™~ times for 2™~ different cosets. A sign change
(sign(x)y) is performed after the sign of the parity check
and the minimum LLR magnitude are found for each coset.
For example, the projection of the RM(7,3) code requires
(22 — 1) x 2772 = 96 pair-wised multiplications of signs and
comparisons, and 2772 = 32 sign changes. The projection of
the RM(7,4) code requires (2% — 1) x 2773 = 112 pair-wised
multiplications of signs and comparisons, and 273 = 16 sign
changes. Operations repeat N times when projecting to N
subspaces.

FHT decoding: The FHT decoding is performed on the
projected codeword that has a code length of 2™~¢, and the
FHT decoding has three steps [46]: i), perform the FHT; ii),
find the index corresponding to the element with the largest
magnitude in the FHT output; iii), encode the message vector
corresponding to that index back to the first-order RM code.
The FHT needs 2~ ¢(m — d) additions and subtractions in
total. 2m~< — 1 pair-wised comparisons (max(z,y)) are need
to search the index of the maximum magnitude in the FHT
output with a length 2™~¢, The maximum complexity of fast
encoding for polar codes is %nlog n [47], [48], where n is the
code length. Due to the similarity between polar codes and RM
codes, the same encoding technique can apply to RM codes,
and the encoding complexity of RM codes is assumed to be the
same of polar codes. As the encoding operation is viewed as
the sign multiplication and the complexity of the fast encoding
is used as the weight in the prior work [34], we follow the
same convention and the weight of the encoding of the order-
1 RM subcodes is ((m —d)2™~%) /2 sign multiplication
operations. FHT decoding of the RM(7,3) code requires
2% x5 = 160 additions and subtractions, 2° —1 = 31 pairwised
comparisons, and (2° x 5) /2 = 80 sign multiplications. FHT
decoding of the RM(7,4) code requires 2¢ x 4 = 64 additions
and subtractions, 2* — 1 = 15 pairwised comparisons, and
(24 X 4) /2 = 32 sign multiplications. FHT decoding is done
N times to decode N subcodes.

Aggregation: From (7), each decoded LLR is estimated
based on all other LLRs in the same coset, so the min-
sum approximation (7) is performed among D — 1 elements.
This results in D — 2 pair-wised multiplications of signs
(sign(z)sign(y)) and pair-wised comparisons(min(|z|, |y|)).
A sign change operation (sign(x)y) is performed after the
sign of the parity check and the minimum LLR magnitude
are found. Also, an additional sign change is performed based

on the decoded first-order codeword (—1@/Bi (T)). Thus, two
sign change operations are needed by the aggregation. These
operations are repeated n times to get estimations of n LLRs in
the received LLR vector. Hence, the estimation of the received
LLR vector of a RM(7,3) code requires 2 x 27 = 256 pair-
wised multiplications of signs and comparisons, and 2 x 27 =
256 sign change operations. The estimation of the received
LLR vector of a RM(7,4) code requires 6 x 27 = 768 pair-
wised multiplications and comparisons, and 2 x 27 = 256 sign
change operations. After computing results from N subspaces,
N — 1 additions are needed to accumulate results from all
subspaces. In the aggregated LLR vector, n estimated LLRs
are normalized in every iteration, which takes n multiplications
(- y).

Syndrome early stopping: Since the parity check matrix of
the RM(m, r) code is H = G(m, m—1r—1), the construction
process of H can be viewed as removing first k£ rows in
G(m,m) with a weight < 27!, Hence, the structure of
H can be approximately viewed as the concatenation of a
(n—k) x k sub-matrix on the left and a (n—k) x (n—k) lower
triangular sub-matrix on the right. To compute the ith element
in the length n — k syndrome vector, k£ + ¢ multiplications
and k£ + 7 — 1 additions are needed. In total, the number of
multiplications is

Zk+i:kx(nfk)+

and the number of additions is Y7 (k — 1) +
(n—k)+ 5% (n—k + 1).

Hence, the parity check of the RM(7,3) code requires
6112 additions and 6176 multiplications. The parity check
of the RM(7,4) code requires 3277 additions and 3306 mul-
tiplications. Operations mentioned above are repeated Ny,
times if N, syndrome checks are performed. Moreover, the
multiplication and the addition in the binary field are viewed
as AND and XOR operations respectively, which are assumed
to have a unit cost.

_ k(nfk: +1),

(k—1) x

V. REDUCED-COMPLEXITY CPA/PCPA DECODERS

In this section, the syndrome-based early stopping (SYN)
and the scheduling scheme (SCH) method are applied to
the CPA/PCPA decoder. First, the syndrome check pattern is
redesigned, and this redesigned pattern aims to avoid repeated
syndrome computations when extending the decoder to the
simplified list decoder. Also, the redesigned syndrome check
pattern should address corner cases generated by the char-

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

acteristics of the CPA decoder and the proposed scheduling
scheme (SCH) for reducing the worst-case complexity. Sec-
ond, to apply SCH in the CPA/PCPA decoder, a discussion on
subspaces that are kept in the scheduling scheme is presented
in this work.

A. Redesigned Syndrome Check Pattern

The syndrome can be checked after receiving the LLR
vectors and aggregating § decoding results as proposed in [27].
This proposed syndrome check pattern does not take several
corner cases into consideration, and repeated syndrome com-
putations might be performed when extending to the simplified
list decoder. Corner cases addressed in this work are the
following:

1) The number of subspaces in the PA decoder might not
be divisible by the frequency 9, so the syndrome check
might be skipped at the end of the iteration.

2) When adopting the SCH [27] into the decoder, it is likely
that the number of subspaces is smaller than the syndrome
check frequency § or that the number of subspaces is not
divisible by 9.

3) A syndrome check result should be returned alongside
the decoded codeword to avoid repeated syndrome com-
putation in the simplified list decoder.

Because of the corner cases mentioned above, the syndrome
check pattern should be redesigned. Our simulation results
show that, on average, several FHT decoding attempts are
needed to output a codeword at our target FER, and we
hypothesize that error-free received LLR vectors are rare. So,
the redesigned syndrome check pattern removes the syndrome
check on the received LLR vector. Also, we propose an
adaptive frequency to handle corner cases, which ensures that
every returned decoded codeword will be accompanied by a
syndrome check result. Assume np is the number of subspaces
used in the current iterations, and ng is either not divisible
by the d or smaller than . Given a frequency J, we compute
the sequence that contains the number of aggregated decoding
results of subspaces before the syndrome check will perform
as follows:

Step 1: The total number of syndrome checks is calculated
as ["B], and a sequence f = [1,2,...,[2B]], which
records the subspace’s indexes of where the syndrome
check should be performed, is generated.

Before performing a syndrome check, a number of
subspace results should be aggregated. The sequence
that stores the number of aggregated subspaces is
calculated by J f.

The elements in f are clipped to np ({min(d x
i,np), Vi € {1,...,["B]}}).

Two examples are given to demonstrate how the adaptive
scheme handles corner cases mentioned above.

Example 1: Assume that a RM(7,2) code is decoded
by the CPA decoder and the syndrome check frequency
0 = 32. When r = 2, the CPA decoder is equivalent to
the RPA decoder. Hence, the CPA decoder needs to decode
1%277 subspaces. The number of syndrome checks is ["B] =

[55] = 4, and a sequence [1,2,3,4] is created. Then, the

sequence is multiplied with the syndrome check frequency

Step 2:

Step 3:

1463

0 to get indexes when the syndrome check should perform
(0 f = [32,64, 96, 128]). Lastly, indexes that are larger than n
are clipped to n, and the sequence becomes [32, 64, 96, 127].
Hence, the syndrome check would be performed after aggre-
gating 32, 64, 96, and 127 results of subspaces respectively.

Example 2: Assume that a RM(7, 2) code is decoded by the
CPA decoder with a syndrome check frequency 6 = 32, the
reduction factor for SCH is dscy = 2, and N,,,4 = 4. When
r = 2, the CPA decoder is equivalent to the RPA decoder.
Hence, the CPA decoder needs to decode 127 subspaces
in the first iteration, 64 subspaces in the second iteration,
32 subspaces in the third iteration, and 16 subspaces in the
last iteration. It can be seen that a syndrome check can be
outputted alongside the decoded codeword for the first three
iterations, and the decoder at the iteration four cannot output
a syndrome check alongside the decoded codeword as np
at iteration four is smaller than . Hence, by the adaptive
scheme at iteration four, the number of the syndrome check
is [%2] = [45] = [0.125] = 1, and the generated sequence
is [1]. Then, the sequence is multiplied by § to get the index
([1 x 8] = [32]), and addresses the corner case by clipping to
np ((min(32,np)] = [min(32, 16) = 16]).

B. Scheduling Scheme

The scheduling scheme [27] can be applied to the
CPA/PCPA decoder to reduce the worst-case complexity. The
maximum number of subspaces/projections is reduced by a
factor of dscy after every iteration. If we choose to use
the number of instances of FHT decoding to estimate the
worst-case complexity, then the worst-case complexity of the
CPA/PCPA decoder with SCH is vaz’g““'fl[g? | instances
of FHT decoding, where np is the number of siqfl;'spaces used
by the CPA/PCPA decoder. The other problem that should be
answered is what subspaces should be kept for later iterations
if the SCH is used in the PCPA decoder.

In [27], assume there are ng subspaces in the RPA decoder,
and these np subspaces are firstly shuffled. At every iteration
1, the RPAgcy decoder uses the first uz;‘;l subspaces in the
decoding process, where i € {0,1,..., Nz — 1}. A greedy
search method is proposed to generate the Opt. PCPA decoder
in [31], which firstly collects a set of subspaces that have
zero pairwise correlation with each other, and then, a new
subspace that incurs a minimum increment of set correlation
with respect to the current set of subspaces is added:

dim(B; N B,
argmin, = Z dim(B; (11B;) Q)
B;€S "

,VBj € S and VB; ¢ S.

(11

Hence, for the subspace order generated by the greedy search
method, keeping the first [dT?B | subspaces naturally forms a
set of subspaces with a small set correlation.

Simulations on PCPA decoders with the shuffled and the
greedy search generated subspace order are performed, and
the pseudo-code of the PCPA decode with the new syndrome
check pattern and SCH is shown in Algorithm 1. Fig. 1 (a),
(c), and (e) show the FER results of PCPA decoders with

and without the syndrome check and the SCH. The greedy

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1464

Algorithm 1 PCPAgyn,sch
Input: L, m, T, Nmaa:’ ng, dSCH» 6’ 9

Output: ¢

1 H—G(m,m—r—1)

2 éold — 0

3 izogd —0

4fori=1,..., Npyq. do

5 fori=1,...,[ng/d] do

6 Lf <—m1n5><zn13)

7 Loymu(2) — 0Vz e {0,1}™

8 for j=1,...,ng do

9 L/, < Projection(L,By)

10 §B, < FHIDecoding(L,g,)

1 Loymut+ = Aggregation(L,f//Bj)

12 if j € f then

13 ¢ — HardDecision(Leymu)

14 s« He'

15 if s == 0 then

16 | break

17 L — Lc;_mu

18 ngp <« |—n]B/dSCH—‘

19 ¢ — HardDecision(L)

20 if (HLold_LHQ <9HLH2 and éold == é)
or s == 0 then

21 | break

22 j—lold, L — .i/

23 éold —c

24 return ¢, s

search generated subspace order (Ord.) and three different
shuffled subspace orders (Rand.) are used in the simulation.
The frequency § for the syndrome check is set to 16 for the
RM (7, 3) code, 8 for the RM (7, 4) code, 64 for the RM (8, 3),
and the reduction factor dscy = 2. The reasoning for selecting
the parameters 0 is explained in Section VII. PCPA denotes the
PCPA decoder without the syndrome check early stopping and
the SCH. Ord. denotes keeping the first [(;]B] subspaces with
greedy search generated subspace order. Rand. 1,2, and 3
denote keeping the first [2] subspaces with three different
shuffled orders. PCPA decoders with different scheduling
scheme orders have similar error correction performance as
the PCPA decoder without the syndrome check and the SCH.
Observed from Fig. 1 (b), (d), and (f), a similar average
complexity is required by the PCPA decoder with the Ord.
reduction order, compared to random reduction orders. In this
work, the PCPA decoder with the greedy search generated
subspace order is used for all simulations.

Methods have been proposed to reduce the number of
FHT decoding attempts in the worst case. We assume all
recursive layers in the RPA decoder use the same N,,q;.
The original RPA decoder [26] uses all n — 1 subspaces in
every recursive 1ayer so the worst-case complexity of the
RPA decoder is HZ o Ninaw(2™~% — 1). The SRPA decoder

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

—— PCPA —~ @ - PCPAgynsscy Ord.
—&— PCPAgyn:scy Rand. 1 - -4- - PCPAgyn+scy Rand. 2
PCPASYN+SCH Rand. 3

1071 106
10—2 g
o ~
o o 105 e
10-3 < —
|
1074\””\‘ T L 104\””\””\“”\
2 2.5 3 3.5 2 2.5 3 3.5
Ey/No [dB] Ey/No [dB]
(a) RM(7, 3) (b) RM(7,3)
107! 107
T~
10—2
&
g 1073 o
<:E 105
104 ~—
10_5\ T T T 104\”“\“”\”“\
3.5 4 4.5 5 3.5 4 4.5 5
Ey,/No [dB] Ey,/No [dB]
(c) RM(7,4) (d) RM(7,4)
100 107
1071
5
m 10_2 g) 106 ”ﬁvw{)’“”‘%»(),, s
z =
10-3
1074\””\”””“ 105\””\””\“”\
1 1.5 2 2.5 1 1.5 2 2.5
Ey/No [dB] Ey /No [dB]
(e) RM(8, 3) (f) RM(8, 3)
Fig. 1. FERs and numbers of operations of PCPA decoders.

employs multiple sparse RPA decoders that use only a portion
of the subspaces [28]. If one-eighth of subspaces are used
in each recursive layer, the worst-case complexity of the
SRPA decoder is (Npaz)" 12, - 7q7 _; FHT decoding
attempts, where ¢,_; is the number of sparse decoders in the
order-(r — i) recursive layer. The RPA decoder with SCH
employs a decay factor dgcy in each recursion layer, and
the maximum number of subspaces in each recursion layer
is reduced by a factor dscy in the next iteration [27], which
requires [[;_, Z T"”_l(dJl 11 FHT decoding attempts in
the worst case. The RPA decoder with the multi-factor pruning
strategy (RPAyg) uses different pruning factors for different
layers and iterations [49], and its worst-case complexity is

)\RPAMF (m T, Jiters Orecs Nrnaw)

N7YLU.L
Z [0 0rs 2(2™ — 1)) | Areage (M — 1,7 — 1,7015",
61[6]‘7 6reCa maw)

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

1465

TABLE I

WORST-CASE COMPLEXITY OF PA DECODERS. THE WORST-CASE COMPLEXITY IS MEASURED BY THE MAXIMUM NUMBER
OF FHT DECODING ATTEMPTS IN THE DECODER

RM codes | RPA [26] | RPAscy [27] | SRPA [28] | CPA [29] | RPAyr [49] | PCPA-128 [31] | PCPA-1285cy

RM(7,3) | 128016 | 28800 | 16384

10668

| 5879 | 512 \ 240

FHT decoding attempts, where « is the pruning factor at
the first iteration of the order-r recursive layer, and dy., and
drec are pruning factors for every iteration and recursion.

Since the pruning criteria proposed in [30] only works
for RM codes with » > 2, the comparisons of worst-case
complexity are performed on the RM(7, 3) code. From litera-
ture [27], [28], [49], all these worst-case complexity reduction
techniques incur negligible performance loss. Table II presents
results of several worst-case complexity reduction methods.
The reduction factor dscy for RPAscy and PCPAgcy with
128 subspaces is 2. 1/8 of total subspaces are used by the
SRPA decoder, and the number of decoders that only use a
subset of subspaces are 2 and 4 for recursive layers with r =
3 and r = 2 respectively. The parameter setting for the RPA
with the multi-factor pruning is (7, diter, Orec) = (%, %, %)
From Table II, the worst-case complexity has been reduced
by a significant portion by previous work. The PCPA decoder
with SCH leverages the non-recursive structure, pruning, and
the SCH, so it requires significantly fewer instances of FHT
decoding compared to other methods. By using the SCH with
the PCPA decoder, the worst-case complexity is reduced by
50% compared to the PCPA decoder without the SCH.

VI. PROPOSED MODIFICATIONS TO L1ST DECODER

Due to the large computational complexity measured
by the number of FHT decoding (O(n"logn) for RPA
decoders [26] and O(nlogn) with a big multiple (™)),
for CPA decoders [29]), PA list decoders are less attractive
compared to other low-complexity decoders for RM codes
such as the AED for RM codes [34]. Reductions in complexity
are needed for PA list decoders to compete with state-of-the-art
decoders. IDA decoding is used to reduce the high computa-
tional complexity of the list decoder in this work. Also, based
on the existing hardware architecture [40], a latency model is
proposed for the PA list decoder.

A. IDA Assisted Reduced Complexity List Decoder

IDA decoding is proposed by Condo to reduce the average
complexity of list decoders [32], [33] with little decoding
performance degradation. It is observed that most received
soft information can be decoded using small list sizes [33].
Thus, by using IDA as a pre-processing tool, the list size can
be determined based on the statistical information of received
LLRs.

The IDA decoding determines the list size by counting
the number of LLRs with a magnitude that is smaller than
a threshold ~« [32]. If the number of LLRs, which have a
magnitude that is smaller or equal to -, is smaller than the
threshold ¢, a small list size (L;,,,) is used [32]. Otherwise,
a large list size (Lpign) is used. A low-complexity IDA

decoding for Chase decoders, M-IDA decoding, is proposed
to use Ljoy, if the (¢ — 1)-th smallest LLR magnitude of the
received vector is larger than the threshold v [33]. Otherwise,
Lpign is used. The M-IDA can be seen as a low-complexity
variant of the IDA, as it requires fewer comparisons and
counting [33]. From [33], the M-IDA decoder is more suitable
for the Chase list decoder compared to another low-complexity
variant, MD-IDA. It is mentioned in [32] that a large ~ is used
for a large Lj,,,, and a small v is used for a small L;,,,.

As IDA and M-IDA decoding have low complexities [32],
[33], using IDA or M-IDA as a pre-possessing tool will not
increase the complexity of the list decoder significantly. In this
work, the IDA decoder is used as a pre-processing tool for
the PA list decoder, and the pseudo-code of the IDA/M-IDA
simplified list IDA/M-IDA-Simp. List) decoder with proposed
complexity reduction techniques is shown in Algorithm 2.

Algorithm 2 IDA/M-IDA-Simp. List Decoder
Imput: L, m, r, Npaz, 0, t, 7, @, 9, dscy
Output: ¢
1 H «— GenerateParityMatrix(G(m,m —r — 1))
2 L—L
3 ListSize < IDA/M-IDA(L,~,)
4 t — log, (ListSize)
5 (#1,...,2) < indices of the ¢ smallest |L(z)|, z € E
6
7
8
9

Lypar < 2max({|L(2)|, Vz € E})

1=1

for I € { Loz, —Limaz}t do
(L(z1),L(22),...,L(z)) <1

10 ¢, 8 « PCPAgyntscu(L,m, 7, Niaz, 0,6, dscu)
11 if s == 0 then

12 Cli,:) — ¢
13

i=i+1
14 index — argmax; 3 1o 1y (—1) 62 L(2))
15 return ¢ < C/(index, :)

B. Computation of Complexity Reduction for IDA Decoding

By modifying equation (1) in [32], the average/expected list
size can be expressed as

E - 6Llow + (1 - 5)Lhigha (12)

where 9 is the fraction of time that L;,,, is used to decode [32].
In [32] and [33], the fraction of time 0 and the average list
size L are found through the Monte Carlo simulation. In this
work, we postulate that § is the probability of receiving an
LLR vector that can be decoded using L;,,, and L can be

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1466

found using the computed §. For the additive white Gaussian
noise channel (AWGN) channel, the LLR [is computed as [46]

2
l= ;yzzlxRxlOO'lXEb/N“ X Y,

13)

where y is the channel output, E}, /Ny is in decibel [dB], and
R is the code rate. The channel output corresponding to the
LLR threshold ~ is

~
(4 X R x 10E6/Nox0.1)"

As independent and identically distributed (i.i.d) code bits are
transmitted, and the symmetric AWGN channel and the binary
phase-shift keying (BPSK) modulation are used, the all-zeros
transmitted codeword can be used to compute the probability
of receiving a soft information vector that can be decoded by
Lj,y. For IDA decoding, the probability of receiving an LLR
vector that can be decoded with L, is

Yy = (14)

p—1
5= % (2) P> ke = 1 Pl < ol = 1)
—o \¥i
Pi
o=l
= 3 (1)@= Pl ke = 0y Pl < ke = 1,

@;=0
(15)

where [is the LLR corresponding to the channel output y, and

o1 (y—1)°
P(Jl] < =1)=)
(e =1)= [o550
For M-IDA, the probability of receiving an LLR vector that
can be decoded with L., is

_tz<> (> yle = D)= P(I] < 5]z = 1)"
-2 (0)e-

Let the list size L be a random variable with two realizations
Liow and Ly;gp, and the corresponding probabilities are J and
1 — §. The list size only depends on the current received
LLR vector, and it does not depend on other list sizes
generated by previous and later received LLR vectors. So,
in the simulation, all list sizes generated by IDA or M-IDA
decoding are mutually independent and hence uncorrelated.
It can be concluded that the list size L is an i.i.d random
variable. Also, the expected value of L? is bounded (E[L?] =
6L ., + (1 — 6)L%Ligh < L%mlgh € R). By the strong law
of larger numbers [50], the empirical mean of the list size
returned from simulations converges to the expected value of
the list size almost surely as the number of simulation runs
goes to infinity.

The complexity reduction produced by IDA decoding is
found through simulations in previous work [32], [33]. The
analytical computation for the reduced average list size helps
speed-up the process of parameter tuning for IDA decoding,
and it is also possible to extend to other channel models.

dy. (16)

P(|l] < ylz = 1))~

a7

P(|l| <Alx = 1)“.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

The uncorrelated normalized Rayleigh fading channel is
used as a demonstration. The normalized Rayleigh fading
channel distorts the transmitted signal as the following:

y=rxz+N, (18)

where r follows a normalized Rayleigh distribution [51]:
P(r) = 2rexp(—r?),

x € {—1,1} is the symbol of the BPSK modulation, and N
follows the Gaussian distribution with mean 0 and variance
o?. With the perfect state information (SI), the fading factor
r is treated as a constant [52]. Without SI, the received signal
y follows the following distribution [52]:

(y —rz)?
P(ylz) = Noroe exp <_W P(r)dr
2242 2 —
LY exp (202(302?1202) o #) erfe (202(z2y+202)>
; (z2 + 202)%

2
N V20 exp(—4Ls) '
V(22 + 202)
where erfc(-) is the complementary error function.

When there is no SI, the LLR of the normalized Rayleigh
fading channel can be computed as [52]:

19)

Plylz =1)
l=ln ———
P(yle = —1)
E(y)® <2y2)
—In V22) (20)
vy
£(y)® < \/m)
where
ely) = Vzon)
Y A1t 202)
_ h? _ _ y
®(h) =1+ \/whe" erfe(—h), and h e It can
be easily checked that
Y
Pl—ylz=-1)=((-y)? | ——— | = P(ylx = 1),
(-l)=¢(=y) (27T 202)> (vl)

so the normalized Rayleigh fading channel is symmetric and
we can assume the all-zeros codeword is transmitted.
Similar to computing the average list size for the AWGN
channel, we need to convert the LLR threshold v to the
corresponding received signal y.,. However, the explicit form
for the inverse of equation (20) is hard to derive, so it
is not straightforward to know whether there is a inverse
function between the threshold v and a received signal y,.
The following theorem shows that equation (20) is bijective.

. — Yy
Theorem 1: Let h = Jaer(17207) and the LLR under the
normalized Rayleigh fading channel is
£(y)2(h) ®(h)
In =1In =1, 201
§(y)@(—h) ®(—h)

and equation (21) is bijective.

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

Proof: The proof is composed of two steps to show
equation (21) is bijective. The first step shows there exists
a solution h for arbitrary value [(i.e., surjection), and the
second step shows that the solution h for the given [is unique
(i.e., injection).

Surjection: Given that [is a function of A (equation (21)),
at least one h exists for each and every I.

Injection: Instead of analyzing equation (21), it is suffice to
analyze the function after taking the exponential on both sides
of the equation (21), and we have

= exp(l).

By taking the derivative with respect to (w.r.t) h, we have

(B0 e
dh \ ®(—h) (v/7exp(h2)h erfe(h) —

which implies equation (22) > 0 and 3 2(h)) is monotonically
increasing w.r.t. h. Hence, equation (21) is also monotonically
increasing w.r.t. h, and the solution % for the given [is one-
to-one.
Conclusion: Equation (21) is bijective.]
Corollary 1: Since equation (21) is bijective, equation (21)
is invertible.
Since the explicit form for the inverse of the simplified LLR
equation (21) is still hard to derive, in this work, the solution
h is found by solving the root finding problem given a
positive LLR threshold +:

P(hyy)
P(—hqy)

5 @

—exp(+7) = 0. (23)

The root finding problem can be solved by the Newton’s
method given the expression in (23) and the derivative (22).
Once we obtain the value of A, using Newton’s method, the
received signal y, - can be derived by

Yiny = hyy X \/202(1 4 202). (24)

The corresponding received signal for the negative LLR
threshold —+ (y_,) can be derived following the same pro-
cedure mentioned above. Since we can assume the all-zeros
codeword is transmitted, the probability of receiving a LLR
with a magnitude less or equal to v under the normalized

Rayleigh fading channel is
S S——
202(14 202)

(25)

Pl <ol =1= [ewe

Y-~

The probability d of using L;,,, can be computed using the
same procedure for the AWGN channel.

C. Latency Analysis of the PA List Decoder

Based on the latency model of the hardware architecture
of the RPA decoder [40], we analyze the latency caused
by the key functional operations used in our proposed list

1467

decoder. In order to use the latency model in [40], the
following theorem shows that the projection and aggregation
function for the s-dimensional subspace can be decomposed
into a series of compositions of projection to 1-dimensional
subspace. The projection to the 1-dimensional subspace is a
functional operation supported by the architecture [40].

Theorem 2: The projection function (2) for the s-
dimensional subspace can be decomposed into an s-level
composition of the projection to 1-dimensional subspaces.

Proof: For an arbitrary s-dimensional subspace, there

are 2° LLRs in the same coset, and we denote the projection
function for the s-dimensional subspace as

25
_ l;
hos(l1,1a,...,l2s) = 2tanh 1 <Zl_[l tanh <2>> . (26)

Equation (26) can be re-grouped as the following:
h2s(l17 lQa RN l2s)

9s
= 2tanh™! (H tanh (g))
i=1
25 1

= 2tanh~! [tanh 72 tanh ™! H tanh (

v

98

I[tenh (Z)

i=25-141

1
= 2tanh ™" (tanh <2h25—1 (lh,la,. .., l25—1))

1
tanh <2h25—1 (125—14,1, lgs—ld‘,g, ey lQa)))
- h2(h25—1 (11127 ey lgs—l)7 h25—1(125—1+1, 125—1_;’_2, ey 125)),

where hy(A, B) = 2tanh ™' (tanh(A/2) tanh(B/2)) denotes
the 1-dimensional projection function. If we repeat the above
derivation for hgs—1(+), we have

oot (1,12, - . le1)
= ha(hge—2(l1, la, . ..

hzs—Z (lzs—2+1, l25—2+2, ey

tanh %2 tanh ™!

7125_2)7
lyo-1)),
and

Iy:)
= hg(hgs—2 (lgs—1+1, lgs—1+2, ceey

hQS—l (125—1+1, l25—1+27 ceey
l25—1+2s—2),
la+)).

h25—2 (l25—1+23—2+1, l25—1+25—2+2, ey

By induction, we have

hgs = hg(hg(hg .. .), h2(h2 ..)), (27)
which is an s-level composition of the 1-dimensional projec-
tion function. O

Since —tanh™'(z) = tanh '(—z) and —1%/m: SOy
{1, —1}, the aggregation function can be rewritten as

) L(z
— 198, [9tanh~? H tanh ((22)>

z €T \z

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1468

X Lz
— 2tanh ™! [=19/, H tanh ((ZZ))

2
2z €T\z

_19/8,(T)
= 2tanh! <tanh <+OO x 1 >

2
11 tanh(L(;i)> ,

2z €T\z

(28)

and there are 2° tanh(-) functions inside tanh™'(-). By Theo-
rem 2, the equation (28) can be reorganized as the composition
of the 1-dimensional projection function as well.

Given the new form of the projection function shown in
Theorem 2 and the aggregation function (28), the projection
unit in [40] can be used to realize the projection and the
aggregation function for the CPA decoder with SCH. Hence,
the latency of all PA decoders using the structure of the CPA
decoder with SCH is

- Nmaw * (2 * 8§k tproj + tFHT + tdivider)
Nmaz—1 1 n
B
b Y (IpEn-1),
2 7,

where tp'r'oj = 1, tFHT = 3, and tdivider = ’—10g2 (nIB)]
are the latencies of the projection unit, the FHT decoder, and
averaging the aggregated results respectively. The number of
processing units implemented for the CPA decoder is denoted
as P € {2P,p € {0,1,...,m}}. The latency is measured by
the number of clock cycles.

Compared to the RPA implementation in [40], the latency
caused by inserting input to the (r — 1)-level and the repeated
use of divider in the (r — 1)-level are removed because of the
non-recursive structure of the CPA/PCPA decoder. Since the
latency of the projection unit and the aggregation unit is the
same in [40], the latency of the aggregation function used by
the CPA decoder is the same as the latency of the aggregation
function used by the RPA implementation in [40]. The latency
caused by the input/output register is omitted in this analysis
because the latency caused by the decoding process is the main
focus of this work.

The latency of the list decoder for the CPA decoder with
SCH is

tim,r)

(29)

tl(m,r) =m+ {

] * (t(m,r) + 1) + logQ(L)7 (30)

CPA
where m clock cycles are used by the bitonic sorter [53] to
construct the Chase-type list decoding, FPcpa is the number
of the CPA decoder built inside the list decoder, the one
extra cycle added to Z(,,) is used to perform the syndrome
check and compute the posterior probability in parallel, and
log, (L) cycles are used to select the codeword with the largest
posterior probability in the list when using a single-elimination
tournament implementation.

VII. EXPERIMENTAL RESULTS
A. Experimental Setup

Experiments are performed over the BPSK modulation and
the AWGN channel while only experiments in Fig.4 are

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

—m— RM(7, 3) PCPA-128 Simp. List —@— RM(7, 4) PCPA-128 Simp. List
—e— RM(8, 3) PCPA-256 Simp. List

108

Avg. Op.

107

106 - ‘ ‘ —
20 21 92 93 94
)

Fig. 2. Average number of required operations for RM(7, 3), RM(8, 3), and
RM(7,4) measured at E}, /Nog = 3.5 dB, 2.5 dB, and 5 dB respectively.

T T T
25 26 97 98

performed over the normalized Rayleigh fading channel. The
Opt. PCPA decoder, which is implemented according to [29]
and [31], with the saturation early stopping (4) is extended
to list decoders. For the Opt. PCPA decoder, 128 subspaces
are used for RM codes with m = 7, and 256 subspaces are
used for RM codes with m = 8. The maximum number of
iterations is Npa, = [%|. The parameter of SCH (dscn) is
set to 2, and the syndrome check frequency ¢ is selected to
achieve the minimum average complexity measured by the
weighted counting rule shown in Table I for the list decoder.
From Fig. 2, the minimum average complexity is achieved
at 6 = 16, 64, and 8 for the RM(7,3), the RM(8, 3), and
the RM(7,4) codes respectively at selective Ej,/Nys. The ML
lower bounds, computed by the method used in [15], are
provided as a reference for simulated RM codes, and they are
computed using our list decoder without IDA/M-IDA (Simp.
list) decoder with a list size of 16.

From Fig. 3 and 4, computed average list sizes (Ana.) match
average list sizes returned from simulations (Sim.) under both
the AWGN and the normalized Rayleigh fading channel.
Since the decoding performance of list decoders with IDA
can always be improved by tightening the parameter settings,
a fair comparison between list decoders with and without
IDA should conduct under a fixed complexity reduction. The
parameters of IDA and M-IDA decoding are searched in the
range shown in Fig. 3 such that a minimum degradation is
incurred at a selected Ep/No (3.5 dB for RM(7,3) code,
2.5 dB for RM(8, 3) code, and 5 dB for RM(7, 4) code) given
a 30% average list size reduction. These parameters are shown
in Table III.

B. Results of Proposed List Decoders

From Fig. 5 (b), (e), and (h), it can be observed that the
average list size can be reduced to around 11 at 3.5 dB for
RM(7,3) codes, 2.5 dB for RM(8,3) codes, and 5 dB for
RM(7,4) codes, which is roughly a 30% reduction in the
average list size. From Fig. 5 (a), (d), and (g), all decoders

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

—@— v = 3.5, Sim. - ¢4--~v = 3.5, Ana.
-4-v=4.0, Ana. —m— v = 4.5, Sim.
M-IDA Sim. M-IDA Ana.

—— v = 4.0, Sim.
v = 4.5, Ana.

16

14 H

Avg. List Size

45 50 55 60 65 70
¥
(a) IDA RM(7, 3)

———
0.25 0.45 0.65

©
(b) M-IDA RM(7, 3)

1469

—— v = 2.5, Sim. -4 -~y = 2.5, Ana.

—m— v = 3.0, Sim.

-4--~=23.0, Ana. —m— v = 3.5, Sim. v = 3.5, Ana.
M-IDA Sim. M-IDA Ana.
B
16 Ty bu{ 16
-
o 14 " 14 -
N | |
3
A 12 12
@
< 10 10 -
8 8\“‘\“‘\“‘\‘
70 75 8 85 90 0.02 0.1 0.18 0.26

©
(a) IDARM(7, 3)

¥
(b) M-IDA RM(7, 3)

Avg. List Size

(d) M-IDA RM(7,4)
16 -

14 H

Avg. List Size

160 170 180 190 200 210 0.2
® ©
(e) IDARM(8, 3) (f) M-IDA RM(8, 3)
Fig. 3. L of IDA-Simp. List and M-IDA-Simp. List for RM(7, 3), RM(8, 3),
and RM(7,4) codes at E,/No = 3.5 dB, 2.5 dB, and 5.0 dB respectively.

TABLE 11T
PARAMETERS FOR IDA AND M-IDA DECODING

RM(7, 3) RM(7, 4) RM(8, 3)
IDA M-IDA IDA M-IDA IDA M-IDA
v 45 0.2 4 1 4 0.05
© 66 - 14 - 190 -

with IDA or M-IDA decoding have less than 0.1 dB loss in
decoding performance at a FER of 1074,

C. Comparisons With the AED-BP Decoder

Our proposed reduced-complexity PA list decoders are
compared with the state-of-the-art AED-BP decoder with
a maximum number of iterations of 200 and the reduced
factor graph [34]. The number of ensembles used by the
AED-BP is 16. The AED-BP with N,,,, = 200 is used

Fig. 4. L of IDA-Simp. List and M-IDA-Simp. List for the RM(7,3) code
at By /No = 3.5 dB under the normalized Rayleigh fading channel.

to compare the complexity with the proposed decoders. The
AED-BP with N,,,, = 10 is used to compare the latency,
which will be explained in the later section. Fig. 5 (c), (f),
and (i) show the average number of operations using weights
shown in Table I. It can be observed that, for RM(7,3) and
RM(8,3) codes, the complexity of proposed list decoders
is smaller than the AED-BP decoder at E,/Ny = 3.5 dB
and Ey/Ny = 2.5 dB respectively. For RM(7,4) codes, the
AED-BP decoder requires fewer operations than list decoders
at E, /Ny = 5.0 dB. From Fig.5 (g), the proposed list decoder
has 0.4 dB gain compared to the AED-BP decoder at a FER
of 2 x 10~* when decoding the RM(8, 3) code.

Besides comparing the average number of operations,
we investigate the number of operations in the worst-case sce-
nario (decoding without early stopping mechanisms) in Fig. 6.
When extended to the list decoder, the PCPA decoder with
128 subspaces and dgcy = 2 is used for m = 7 RM codes, and
the PCPA decoder with 256 subspaces and dscy = 2 is used
for the RM(8,3) code. The BP decoder with 200 iterations
and the reduced factor graph are used in the AED. The list
size for the simplified list decoder is 16, and 16 ensembles
are used in the AED. It can be observed that, in the worst-
case scenario, the simplified list decoder uses 6.8x fewer
operations compared to AED-BP when decoding RM(7, 3)
codes, 3.5x fewer operations compared to AED-BP when
decoding RM(8,3) codes, and uses 4.7x fewer operations
compared to AED-BP when decoding RM(7,4) codes.

D. Comparisons With the SCL Decoder

The complexity of the SCL decoder is counted using the
same rule in [54], which counts the operations of the f and g
functions, and the number of XORs for the partial sum. In [54],
the f function takes the min-sum form, which requires three
operations (two sign changes, and one operation for finding
the minimum), and the ¢ function takes two operations (one
sign change and one addition).

List sizes of SCL decoders are tuned to achieve similar
decoding performance as the Simp. List decoder. From Fig. 5,
SCL decoders with list sizes of 32, 1024, and 8 can approach

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1470

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

—#— Simp. List —@— IDA-Simp. List —&— M-IDA-Simp. List —&— AED-BP, N, 4. = 200 —¢— AED-BP N, 4. = 10 SCL ML lower bound
10! 20
107
—2
10 16 o o
1 8
1073 A @ &
©] 2
) 1 4 12 X 106
10-4 | % <
0 z
1 8
1075 A
E 105 1
10—6 ‘ ‘ ‘ 4 4 ‘ ‘ ‘ ‘
2 2.5 3 3.5 4 2 2.5 3 3.5 4
E, /Ny [dB] E} /No [dB] E}, /N [dB]
(a) RM(7, 3) (b) RM(7, 3) (c) RM(7, 3)
1071 20 107
102 16 0
] 2 106
B [} 8
&~ 2
B 1073 3 12 %
1 go <
] < 10°
1074 4 8
10—° ‘ T ‘ 4 T T ‘ 10% T T ‘
3.5 4 4.5 5 3.5 4 4.5 5 3.5 4 4.5 5
E}, /Ny [dB] E} /N [dB] E} /N [dB]
(d) RM(7, 4) (e) RM(7,4) (f) RM(7, 4)
100 20 108
1071 ¢
1 16 = 0
1072
1 [} 3
o i 2
5 103 3 5 12 o 107
1 g0 <
1074 o <
E| T ———
] 8 =
10-° E
10-6 | 4 ‘ ‘ ‘ ‘ 106 - ‘ ‘
1 1.5 2 2.5 3 1 1.5 2
E, /Ny [dB] E} /Ny [dB] E} /No [dB]
(2) RM(8, 3) (h) RM(8, 3) (i) RM(8, 3)
Fig. 5. FERs, average list sizes, and average numbers of operations of list decoders. Proposed list decoders (without IDA or M-IDA) and the AED-BP use

a list/ensemble size of 16. The SCL decoder uses list sizes of 32, 1024, and 8 for decoding RM(7, 3), RM(8, 3), and RM(7,4) codes respectively.

similar decoding performance to the Simp. List decoders for
RM(7,3), RM(8,3), and RM(7,4) codes respectively. It can
be observed that SCL decoders use an order of magnitude
lower numbers of operations compared to Simp. List decoders
and AED-BP decoders when decoding RM codes with rates >
0.5 (RM(7,3) and RM(7,4) codes). When decoding low-rate
RM codes such as the RM(8,3) code, the proposed list
decoders require a similar or smaller number of operations
to the SCL decoder at a high E,/Ny (e.g., > 2.5 dB)
region that is interested by the actual applications such as

the ultra-reliable low-latency communication [55]. However,
a list size of 1024 is required by the SCL decoder to achieve
a similar decoding performance to the Simp. List decoder,
which causes a large decoding latency due to the serial nature
of the SCL decoders.

E. Latency Analysis

The latency of the SCL decoder can be characterized
into two parts [57], [58]: I), Latency induced by decoding;
I), Latency induced by the sorting process. The decoding

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

1471

TABLE IV

THE E}/No REACHING A FER= 104, THE Nynaz FOR AED-BP AND PCPAgcy LIST DECODERS, THE LIST SIZE L FOR THE SCL DECODER, AND THE
LATENCY ESTIMATION IN THE NUMBER OF CLOCK CYCLES BASED ON EXISTING HARDWARE ARCHITECTURES. THE NOTATION — MEANS THE
DECODER DOES NOT REACH THE FER= 10~ WITHIN THE RANGE OF THE SIMULATION

RM Codes | AED-BP [56] AED-BP [56] SR-List [41] PCPAscy List

‘ E} /Ny [dB] Nmaz Latency ‘ Ey,/No [dB] Npaz Latency ‘ E} /Ny [dB] L Latency ‘ E} /Ny [dB] Npaor Latency
RM(7, 3) 3.55 200 1207 3.85 10 67 3.55 32 86 3.55 4 68
RM(7,4) 4.80 200 1207 4.92 10 67 4.85 8 88 4.85 4 76
RM(8, 3) - 200 1407 - 10 77 2.66 1024 121 2.53 4 73

B R 3) PePAscy Simp. List lIRM(7.3) AED-BP parallel implementation, the proposed PCPA list decoder has

0B rRM@4) PePAseu Simp. List BBIRM(7.4) AED-BP lower latency than the SCL decoder and the AED-BP decoder

00 rRM(8.3) PCPAScH Simp. List [] [RM(8.3) AED-BP with N,ae = 200. In actual implementation, a small N, 4,

108 - is given to the BP decoder. We found that the AED-BP

i decoder has a similar latency to the proposed list decoder

when N,,,, = 10. However, compared to other decoders,

C_L Fig. 5 and Table IV show that the degradation in the decoding

o performance will occur when setting N,,.,., = 10. Hence,

g 107 4 we conclude that the proposed list decoder requires a smaller

E decoding latency to reach the near ML decoding performance.

VIII. CONCLUSION
106 In this work, we propose complexity-reduction techniques

Decoders

Fig. 6. Comparisons of the number of operations in the worst-case scenario
(no early stopping) between the simplified list decoder extended from the
PCPA decoder with dgcy = 2 and the AED-BP with 200 iterations. 128 and
256 subspaces are used for m = 7 and m = 8 RM codes respectively. The
list size and the number of the ensemble are 16.

latency is modeled by the state-of-the-art low-latency hardware
architecture for the node-based SCL decoder, the sequential
repetition (SR) list (SR-List) decoder [41]. The latency of
performing the f function, the g function, and the partial sum
for the SC decoder is one clock cycle. The sorting process is
embedded into the computation inside the special nodes [41].

The latency of the AED-BP is estimated based on the
latency model of the hardware architecture for the BP list
(BPL) decoder [56]. Based on the hardware architecture for
the BPL decoder [56], the latency is composed of three parts:
the permutation and the inverse permutation, the computation
of the likelihood of returned codeword (one clock cycle),
and the decoding latency (N,q.(m — 1) clock cycles). The
architecture in [56] uses a sequential implementation, and it
does not use the likelihood to select the final codeword. In this
work, we assume that the likelihood is used to select the final
codeword, and log, (L) cycles are need to select the codeword
with the largest likelihood among the ensemble when using
a single-elimination tournament implementation. Since the
permutation unit in [56] is for the factor graph permutation,
we assume a specific hardware unit is implemented for each
permutation for the AED-BP, and this unit uses one clock cycle
for both the permutation and the inverse permutation.

In this latency analysis, full parallelism is assumed on the
AED-BP, the PCPA list decoder, and the SR-list decoder.
Table IV shows the latency estimation when decoding
RM(7,3), RM(8,3), and RM(7,4) codes. Under the fully

for the PA list decoder. A redesigned syndrome check pattern
and the SCH are first applied to the CPA/PCPA decoder.
The CPA/PCPA decoder with the redesigned syndrome check
pattern can return the syndrome check result alongside the
returned codeword. To reduce the average computational com-
plexity of the list decoder, we use the recently proposed IDA
decoding as a pre-possessing tool that adaptively determines
the list size based on the received soft information. We give
an analytical derivation to the average list size of list decoders
with IDA, and analytically derived results match the empirical
results. For list decoders with IDA decoding, the average list
size can be reduced by 30% with less than 0.1 dB decoding
performance loss at a FER of around 10~*. The proposed
reduced-complexity list decoders requires a smaller average
number of operations than the AED-BP decoder when decod-
ing RM(7,3) and RM(8, 3) codes. In the worst-case scenario,
the simplified list decoder uses a smaller number of operations
compared to the AED-BP decoder when decoding RM(7, 3),
RM(8, 3), and RM(7,4) codes. Proposed list decoders require
a smaller latency than the AED-BP and the SCL decoder to
reach near ML decoding performance.

ACKNOWLEDGMENT

The authors would like to thank Marzieh
Hashemipour-Nazari for the insight of calculating the
number of FHT decoding used in the RPA decoder with
multi-factor pruning.

REFERENCES

[1] D. E. Miiller, “Application of Boolean algebra to switching circuit design
and to error detection,” Trans. IRE Prof. Group Electron. Comput.,
vol. EC-3, no. 3, pp. 6-12, 1954.

[2] E. Arikan, “A survey of Reed-Miiller codes from polar coding per-
spective,” in Proc. IEEE Inf. Theory Workshop Inf. Theory, Jan. 2010,

pp. 1-5.

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

1472

[3]

[4]
[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

NR; Multiplexing and Channel Coding V17.1.0, document TS 38.212,
3GPP, Mar. 2022.

S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, E. Sasoglu, and
R. L. Urbanke, “Reed—Miiller codes achieve capacity on erasure chan-
nels,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4298-4316, Jul. 2017.
E. Abbe, A. Shpilka, and A. Wigderson, ‘“Reed-Miiller codes for
random erasures and errors,” IEEE Trans. Inf. Theory, vol. 61, no. 10,
pp. 5229-5252, Oct. 2015.

O. Sberlo and A. Shpilka, “On the performance of Reed—Miiller codes
with respect to random errors and erasures,” in Proc. 31st Annu. ACM-
SIAM Symp. Discrete Algorithms, 2020, pp. 1357-1376.

G. Reeves and H. D. Pfister, “Reed—Miiller codes on BMS channels
achieve vanishing bit-error probability for all rates below capacity,” I[EEE
Trans. Inf. Theory, vol. 70, no. 2, pp. 920-949, Feb. 2024.

E. Abbe and C. Sandon, “A proof that Reed-Miiller codes achieve
Shannon capacity on symmetric channels,” in Proc. IEEE 64th Annu.
Symp. Found. Comput. Sci. (FOCS), Nov. 2023, pp. 177-193.

E. Abbe and M. Ye, “Reed-Miiller codes polarize,” IEEE Trans. Inf.
Theory, vol. 66, no. 12, pp. 7311-7332, Dec. 2020.

I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Trans. IRE Prof. Group Inf. Theory, vol. 4, no. 4, pp. 3849,
Sep. 1954.

E. Arikan, H. Kim, G. Markarian, U. Ozgiir, and E. Poyraz,
“Performance of short polar codes under ML decoding,” in Proc. ICT-
MobileSummit Conf., Santander, Spain, Sep. 2009, pp. 10-12.

R. Green, “A serial orthogonal decoder,” Jet Propuls. Lab., Space
Programs Summary, vol. 37, pp. 247-253, Jun. 1966.

Y. Be’ery and J. Snyders, “Optimal soft decision block decoders based
on fast Hadamard transform,” IEEE Trans. Inf. Theory, vol. IT-32, no. 3,
pp. 355-364, May 1986.

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.

I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Miiller
codes: Recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3,
pp. 1260-1266, Mar. 2006.

N. Stolte, U. Sorger, and G. Sessler, “Sequential stack decoding of binary
Reed-Miiller codes,” ITG FACHBERICHT, pp. 63-70, Jan. 2000.

N. Stolte and U. Sorger, “Look-Ahead soft-decision decoding of binary
Reed-Miiller codes,” in Proc. Int. Symp. Inf. Theory Appl., Honolulu,
HI, USA, 2000, pp. 1-10.

K. Niu and K. Chen, “Stack decoding of polar codes,” Electron. Lett.,
vol. 48, no. 12, pp. 695-697, Jun. 2012.

K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Commun. Lett., vol. 16, no. 10, pp. 1668-1671, Oct. 2012.

V. Miloslavkaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Commun. Lett., vol. 18, no. 7, pp. 1127-1130, Jul. 2014.

M. Jeong and S. Hong, “SC-fano decoding of polar codes,” IEEE Access,
vol. 7, pp. 81682-81690, 2019.

E. Arikan, “From sequential decoding to channel polarization and back
again,” 2019, arXiv:1908.09594.

P. Yuan and M. C. Coskun, “Complexity-adaptive maximum-likelihood
decoding of modified GN-coset codes,” in Proc. IEEE Inf. Theory
Workshop (ITW), Oct. 2021, pp. 1-6.

S. A. Hashemi, N. Doan, W. J. Gross, J. Cioffi, and A. Goldsmith,
“A tree search approach for maximum-likelihood decoding of
Reed-Miiller codes,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2021, pp. 1-6.

M. Ye and E. Abbe, “Recursive projection-aggregation decoding
of Reed-Miiller codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8,
pp. 4948-4965, Aug. 2020.

J. Li, S. M. Abbas, T. Tonnellier, and W. J. Gross, “Reduced complexity
RPA decoder for Reed-Miiller codes,” in Proc. 11th Int. Symp. Topics
Coding (ISTC), Aug. 2021, pp. 1-5.

D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse
multi-decoder recursive projection aggregation for Reed—Miiller codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1082-1087.
M. Lian, C. Héger, and H. D. Pfister, “Decoding Reed-Miiller codes
using redundant code constraints,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2020, pp. 42-47.

Q. Huang and B. Zhang, “Pruned collapsed projection-aggregation
decoding of Reed-Miiller codes,” 2021, arXiv:2105.11878.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 73, NO. 3, MARCH 2025

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

J. Li and W. J. Gross, “Optimization and simplification of PCPA
decoder for Reed—Miiller codes,” IEEE Commun. Lett., vol. 26, no. 6,
pp. 1206-1210, Jun. 2022.

C. Condo, “Input-distribution-aware successive cancellation list decod-
ing of polar codes,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1510-1514,
May 2021.

C. Condo and A. Nicolescu, “Input-distribution-aware parallel decoding
of block codes,” in Proc. 11th Int. Symp. Topics Coding (ISTC),
Aug. 2021, pp. 1-5.

M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. T. Brink,
“Automorphism ensemble decoding of Reed—Miiller codes,” IEEE Trans.
Commun., vol. 69, no. 10, pp. 6424-6438, Oct. 2021.

M. C. Coskun and H. D. Pfister, “An information-theoretic perspective
on successive cancellation list decoding and polar code design,” IEEE
Trans. Inf. Theory, vol. 68, no. 9, pp. 5779-5791, Sep. 2022.

B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” IEEE Commun.
Lett., vol. 16, no. 12, pp. 2044-2047, Nov. 2012.

M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolu-
tional (PAC) codes: Sequential decoding vs list decoding,” IEEE Trans.
Veh. Technol., vol. 70, no. 2, pp. 1434-1447, Feb. 2021.

A. Mozammel, “Hardware implementation of Fano decoder for
polarization-adjusted convolutional (PAC) codes,” IEEE Trans. Circuits
Syst. I, Exp. Briefs, vol. 69, no. 3, pp. 1632—-1636, Mar. 2022.

M. Ebada, S. Cammerer, A. Elkelesh, M. Geiselhart, and S. T. Brink,
“Iterative detection and decoding of finite-length polar codes in Gaussian
multiple access channels,” in Proc. 54th Asilomar Conf. Signals, Syst.,
Comput., Nov. 2020, pp. 683-688.

M. Hashemipour-Nazari, Y. Ren, K. Goossens, and A. Balatsoukas-
Stimming, “Pipelined architecture for soft-decision iterative projection
aggregation decoding for RM codes,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 70, no. 12, pp. 5468-5481, Dec. 2023.

Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang,
and A. Burg, “A sequence repetition node-based successive cancellation
list decoder for 5G polar codes: Algorithm and implementation,” IEEE
Trans. Signal Process., vol. 70, pp. 5592-5607, 2022.

E. Abbe, A. Shpilka, and M. Ye, “Reed-Miiller codes: Theory and
algorithms,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3251-3277,
Jun. 2021.

J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288-1299, Aug. 2005.

C. Bliek, P. Bonami, and A. Lodi, “Solving mixed-integer quadratic
programming problems with IBM-CPLEX: A progress report,” in
Proc. 26th RAMP Symp., Oct. 2014, pp. 171-180. [Online]. Available:
https://cris.unibo.it’/handle/11585/354716

T. Clevorn and P. Vary, “The box-minus operator and its application to
low-complexity belief propagation decoding,” in Proc. IEEE 61st Veh.
Technol. Conf., vol. 1, May/Jun. 2005, pp. 687-691.

T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Hoboken, NJ, USA: Wiley, 2005.

E. Arikan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15,
no. 8, pp. 860-862, Aug. 2011.

L. Li and W. Zhang, “On the encoding complexity of systematic polar
codes,” in Proc. 28th IEEE Int. Syst.-Chip Conf. (SOCC), Sep. 2015,
pp. 415-420.

M. Hashemipour-Nazari, K. Goossens, and A. Balatsoukas-Stimming,
“Multi-factor pruning for recursive projection-aggregation decoding of
RM codes,” in Proc. IEEE Workshop Signal Process. Syst. (SiPS),
Nov. 2022, pp. 1-6.

K. L. Chung, A Course in Probability Theory. New York, NY, USA:
Academic, 2001.

R. Asvadi, A. H. Banihashemi, M. Ahmadian-Attari, and H. Saeedi,
“LLR approximation for wireless channels based on Taylor series and
its application to BICM with LDPC codes,” IEEE Trans. Commun.,
vol. 60, no. 5, pp. 1226-1236, May 2012.

R. Yazdani and M. Ardakani, “Linear LLR approximation for iterative
decoding on wireless channels,” IEEE Trans. Commun., vol. 57, no. 11,
pp. 3278-3287, Nov. 2009.

K. E. Batcher, “Sorting networks and their applications,” in Proc. Spring
Joint Comput. Conf., 1968, pp. 307-314.

H. Zhou, W. Song, W. J. Gross, Z. Zhang, X. You, and C. Zhang,
“An efficient software stack sphere decoder for polar codes,” IEEE Trans.
Veh. Technol., vol. 69, no. 2, pp. 1257-1266, Feb. 2020.

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from |IEEE Xplore. Restrictions apply.

LI et al.: REDUCED-COMPLEXITY PROJECTION-AGGREGATION LIST DECODER FOR REED-MULLER CODES

[55] M. Shirvanimoghaddam et al., “Short block-length codes for ultra-
reliable low latency communications,” I[EEE Commun. Mag., vol. 57,
no. 2, pp. 130-137, Feb. 2019.

Y. Ren et al,, “High-throughput and flexible belief propagation list
decoder for polar codes,” IEEE Trans. Signal Process., vol. 72,
pp. 1158-1174, 2024.

A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165-5179, Oct. 2015.

Y. Tao, S.-G. Cho, and Z. Zhang, “A configurable successive-cancellation
list polar decoder using split-tree architecture,” IEEE J. Solid-State
Circuits, vol. 56, no. 2, pp. 612-623, Feb. 2021.

[56]

(571

[58]

Jiajie Li (Graduate Student Member, IEEE) received
the B.Sc. degree in electrical engineering from
the University of Alberta, Edmonton, AB, Canada,
in 2019, and the M.Sc. degree in electrical engineer-
ing from McGill University, Montreal, QC, Canada,
in 2022, where he is currently pursuing the Ph.D.
degree. His research interests include the design of
efficient algorithms and implementations for signal
processing systems, with a focus on error correction
codes.

Huayi Zhou received the B.S. degree from the
School of Information Science and Technology,
Fudan University, Shanghai, China, in 2015, and the
Ph.D. degree from the School of Information Sci-
ence and Technology, Southeast University, Nanjing,
China, in 2020. He was a Post-Doctoral Researcher
(a Wireless Communication Researcher) with Purple
Mountain Laboratories, Nanjing, from 2021 to 2024.
He was a Post-Doctoral Researcher with the
Department of Electrical and Computer Engineer-
ing, McGill University, Montreal, QC, Canada,
from 2022 to 2024. He is currently an Associate Professor with the National
Mobile Communications Research Laboratory, Southeast University, and
Purple Mountain Laboratories. His current research interests include polar
coding algorithms and efficient decoder design.

1473

Marwan Jalaleddine (Graduate Student Member,
IEEE) received the B.Eng. degree from American
University of Beirut and the M.Eng. degree from
McGill University, where he is currently pursuing
the Ph.D. degree, with a focus on modern error
correcting codes (ECCs) and their application in
wireless communication technology. His research
aims to enhance the reliability and efficiency of data
transmission in wireless networks. He has published
several papers in leading journals and conferences,
and he actively participates in IEEE events and
activities.

Warren J. Gross (Fellow, IEEE) is currently a
James McGill Professor and the Department Chair
of the Department of Electrical and Computer Engi-
neering, McGill University. His research interests
include digital communications, machine learning
in hardware, bridging algorithms, and architectures.
He served as the Chair for the IEEE Signal Pro-
cessing Society Technical Committee on Design and
Implementation of Signal Processing Systems and
served on the Technical Directions Board of the
IEEE Signal Processing Society. He served as the
General Co-Chair for the 16th IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH 2021), the 2017 IEEE Global Con-
ference on Signal and Information Processing Systems (GLOBECOM 2017),
and the 2017 IEEE Workshop on Signal Processing Systems (SiPS 2017)
among other senior leadership positions in several international conferences
and workshops. He also has held editorial positions as a Senior Area Editor
and an Associate Editor of IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Authorized licensed use limited to: McGill Libraries. Downloaded on June 26,2025 at 20:19:52 UTC from IEEE Xplore. Restrictions apply.

